نمایش پست تنها
  #29  
قدیمی 10-29-2009
رزیتا آواتار ها
رزیتا رزیتا آنلاین نیست.
مسئول و ناظر ارشد-مدیر بخش خانه داری



 
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677

9,655 سپاس در 4,139 نوشته ایشان در یکماه اخیر
پیش فرض انتگرال ریمان

انتگرال ریمان


  • مجموع ریمان :
    • مثال :
  • انتگرال ریمان:
    • تعریف انتگرال ریمان:
  • همچنین ببینید:




پیدا کردن مساحت
هاشور خورده




همان طور که می توانیم پیدا کردن مساحت زیر یک نمودار منحنی، کار ساده ای نیست. چونسطح زیر منحنی یک شکل منظم نیست پس هیچ فرمول تعریف شده ای برای پیدا کردن مساحت آن وجود ندارد. بنابراین ما به دنبال راهی برای حل این مشکل هستیم.
حال به دنبال راهی برای تخمین مساحت زیر منحنی هستیم.یکی از این راهها استفاده از مجموعه ای از مستطیلها است. ابتدا بازه به چندین جزء بوسیله انتخاب چهار نقطه
تا
روی محور xها تقسیم می کنیم. و عرض مستطیل ها را بر این نقاط بنا می کنیم.(همانند شکل) با جمع مساحت مستطیل ها می توان مساحت زیر نمودار را تخمین زد.
برای محاسبه ارتفاع مستطیل ها، نقطه ای مانند
را انتخاب می کنیم. ارتفاع ما به
نزدیک خواهد بود.





ولی این ارتفاع دقیق نیست. بنابراین نقطه ای مانند
بین های
متوالی انتخاب می کنیم. در این حالت
مقدار دقیق تری را اختیار می کند. اگر

تعریف کنیم در این صورت جمع مساحت مستطیل ها برابر خواهد بود با







مجموع ریمان:



مجموع مساحت مستطیل های که ما برای تخمین مساحت زیر منحنی استفاده می کنیم. مجموع ریمان نامیده می شود. حال با مثالی این مجموع را توضیح می دهیم:



تابع:






نقاط شروع و پایان بازه:



و


تعداد مستطیل ها (یا تعداد بازه ها)
:






با استفاده از مجموع ریمان:


خواهیم داشت:

11.924959 =مقدار دقیق مساحت
11.8740138= مساحت محاسبه شده

بین مجموع ریمان و مقدار دقیق جواب اگر مقایسه ای انجام دهید
در این صورت مقدار خطای با برابر خواهد بود با:



همانطور که مشاهده شد مستطیل ها به صورت رندومی تولید شده اند و تعداد آنها محدود است. حال به نظر شما اگر تعداد مستطیلها یعنی nرا افزایش دهیم و مستطیل ها، حالت منظم به خود بگیرند چه اتفاقی خواهد افتاد.البته توجه کنید که nهای مختلف، مجموع ریمان مختلفی تولید می کنند.








مثال :

می خواهیم مجموع ریمان برای مساحت زیر نمودار منحنی
دربازه
را پیدا کنیم
1) بازه را به 5 قسمت، از
تا
تقسیم می کنیم:
2) عرض مستطیل ها را پیدا می کنیم.






تا





3) نقاط
را در بین
ها برای پیدا کردم ارتفاع مستطیل که برابر با
خواهد بود، قرار می دهیم در این صورت:







تا






4) پیدا کردن مساحت 5 مستطیل:

تا
را پیدا میکنیم.

5) مساحت های بدست آمده را با هم جمع می کنیم:








انتگرال ریمان:



این شکل همگرایی مجموع ریمان
را نشان میدهدهر چه قدر بازه ها کوچکتر
و تعداد مستطیلها بیشتر میشود
مقدار O(حد مجموع بالا)و U (حد مجموع پایین)
به مقدار اصلی مساحت نزدیک خواهد شد.



ممکن است تا اینجا به این نکته رسیده اید که هر چه قدرعددn (یعنی تعداد مستطیلها) بیشتر باشد مجموع ریمان به یک عدد ،همگرا میشود. یعنی حد گرفتن از مجموع ریمان وقتی که n بسیار بزرگ است مساحت زیر نمودار را به ما می دهد.


تعریف انتگرال ریمان:

اگر f تابعی باشد که دربازه
تعریف شده است در این صورت مجموع ریمان تابعf در بازه
وقتی که n به سمت بی نهایت می رود،همگرا به یک مقدار محدود مانند Aخواهد بود.



__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم

به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم

چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم

زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم

خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم

استاد فاضل نظری
پاسخ با نقل قول
جای تبلیغات شما اینجا خالیست با ما تماس بگیرید