 |
|
رزیتا |
10-23-2009 04:12 PM |
واکنشهای هستهای
واکنشهای هستهای
واکنشهای هستهای (Reactions Nuclear)
تبدیلات خود بخودی یا مصنوعی بعضی از هستههای اتمی به هسته دیگر که نتیجه بهم خوردن ترکیب ساختمان هسته یا تغییر در تعداد نوکلئونها (ذرات هستهای) است واکنشهای هستهای نام دارند.
روشهای انجام واکنشهای هستهای
- تجزیه کامل تمامی هستهها زمانی که بوسیله یک ذره یا انرژی فوق العاده زیاد برخورد کند (یا ذره دیگری جذب کنند) معمولا نوترون است.
- شکست هسته به دو هسته غیر مساوی توأم با انتشار پروتون ، نوترون ، ذره آلفا ، اشعه گاما و واکنشهای ترکیب هستهای که تشکیل یک هسته سنگینتر در اثر تجدید ساختمان هسته عناصر سبکتر که همراه با آزاد شدن مقادیر زیاد انرژی است ، صورت میگیرد.
- انرژی حاصل از واکنشهای ترکیب یا (همجوشی) 8 برابر بیشتر از انرژی هستهای واکنشهای شکست هستهای است.
راههای مختلف تولید انرژی هستهای
- شکافت هستهای
- همجوشی هستهای
http://daneshnameh.roshd.ir/mavara/i...26/fission.gif
شکافت هستهای (Nuclear Fission)
فرض می شود نوترون منفردی به یک قطعه ایزوتوپ 235U نفوذ کند در اثر برخورد به هسته اتم 235U ، اورانیوم به دو قسمت شکسته میشود، مقادیر زیادی نیز انرژی آزاد میگردد. در حدود (200Mev) اما مسئله مهمتر اینکه نتیجه شکستن هسته 235U آزادی دو نوترون است که میتواند دو هسته دیگر را شکسته و چهار نوترون را بوجود آورد.
این چهار نوترون نیز چهار هسته 235U را میشکند چهار هسته شکسته شده تولید هشت نوترون میکنند که قادر به شکستن همین تعداد هسته اورانیوم میباشند، سپس شکست هستهای و آزاد شدن نوترونها بصورت زنجیروار به سرعت تکثیر و توسعه مییابد.
در هر دوره تعداد نوترونها دو برابر میشود، در یک لحظه واکنش زنجیری خود بخودی شکست هستهای شروع میگردد. در واکنشهای کنترل شده تعداد شکست در واحد زمان و نیز مقدار انرژی به تدریج افزایش یافته و پس از رسیدن به مقداری دلخواه ثابت نگهداشته میشود. فرض کنیم یک ذره (a) به یک هسته ساکن (x) برخورد کند در نتیجه در واکنشهای هستهای هسته (y) و ذره (b) تولید میشود که این واکنش را بصورت زیر مینویسم:
a + x → b + y
مراحل شکست 235U
1n + 235U → 234U → 144Ba+89Kr + 3 1n
در واکنش اخیر در نتیجه برخورد نوترون حرارتی به 235U آن را به 235U تحریک شده تبدیل میکند. نهایتا اورانیوم تحریک شده نیز بعد از شکافت ، به باریم و کریپتون و سه تا نوترون تولید میشود.
مواد قابل شکست (Fissionable Materials)
موادی که وقتی تحت تابش نوترون قرار میگیرند انجام یک واکنش شکست هسته ای را ممکن می سازند چنین خاصیتی در عناصر زیر وجود دارد: 239Pu ، 235U ، 235U ، ایزوتوپ 233U ، 235U بطور مصنوعی در راکتورهای هستهای با تاباندن نوترون به 233Th بوجود میآید.
محصولات شکست اورانیوم (Uranium Fission Puroduets)
زمانی که هسته اتمی 235U به دو قسمت شکسته میشود عناصر زیر تولید میشوند: استرتیوم 90 ، کریپتون 91 ، ایتریوم 91 ، زیرکونیوم 95 ، 126I ، 137U ، باریم 142 ، سریم 144 قابل ذکر هستند.
همجوش هستهای (Nuclear Fusion)
همجوشی هستهای عبارت است از اتحاد عناصر سبک برای تشکیل عناصر سنگین تر که نوع واکنش را واکنش همجوشی گویند تا بحال در انفجار بمب هیدروژنی قوی و بسیار خوب تشخیص داده شده است. این واکنش برای انسان چندان مفید نیست و بنابراین دانشمندان بطور جدی کوشش می کنند تا واکنش همجوشی را کنترل کنند یعنی در کیف کاهش سرعت واکنش به درجهای که بتواند برای مقاصد صلح جویانه مفید باشد.
در مرحله اول این واکنشها بصورت کنترل شده برای تولید برق استفاده میشود. همچنین انرژی تولید شده در این واکنش 8 برابر انرژی تولید شده سر در شکافت هستهای میباشد. منشأ انرژی تابشی خورشید و دیگر ستارهها یک سری از واکنشهای هستهای انرژی زا است. اتمهایی که دراین واکنشها در درون ستاره شرکت میکنند کاملا یونیزهاند. یعنی تمامی الکترونها از آن کنده شده است. چنین مجموعهای از ذرات باردا را پلاسما مینامند.
دوتریوم و تریتیوم ایزوتوپهای هیدروژن مواد قابل احتراق همجوشی هستهای را تشکیل میدهند. هسته دوتریوم از یک نوترون و یک پروتون تشکیل مییابد. هسته تریتیوم دارای دو نوترون و یک پروتون است.
http://daneshnameh.roshd.ir/mavara/i.../5e/fusion.gif
سوختهای همجوشی
ملاحظات فرآیندهای طبیعی و نتایج حاصل از آنها نشان داده است که واکنشهای همجوشی گوناگونی وجود دارد. از جمله از واکنشهای همجوشی هستهای واکنش دوترون با تریتیوم میباشد.
معادله واکنشهای همجوشی هستهای
نخستین واکنش همجوشی قابل کنترل توسط رابطه زیر ارائه شد (ترکیب ایزوتوپهای هیدوژن)
2H + 3H → 1n + 4He
در این واکنش انرژیی معادل 17.6 Mev آزاد میشود، که از آن میشود در کادبردهای صنعتی و نظامی استفاده نمود.
|
رزیتا |
10-23-2009 04:13 PM |
نوترون
نوترون
تاریخچه
از آنجا که اتمها از نظر الکتریکی خنثی هستند، تعداد الکترونها و پروتونها در هر اتم بایستی برابر باشند. برای توجیه جرم کل اتمها ، ارنست رادرفورد در 1920 وجود ذراتی بدون بار را در هسته اتم مسلم دانست. چون این ذرات بدون بارند، تشخیص و تعیین خواص آنها مشکل است.
ولی در 1932 جیمز چادویک نتیجه کارهای خود را درباره اثبات وجود این ذرات که نوترون (از واژه لاتین به معنای خنثی) نامیده میشوند، منتشر کرد. او توانست با استفاده از داده های بدست آمده از بعضی از واکنشهای هستهای مولد نوترون ، جرم نوترون را محاسبه کند. چادویک با در نظر گرفتن جرم و انرژی تمامی ذراتی که در این واکنشها مصرف و تولید میشوند، جرم نوترون را محاسبه کرد. جرم نوترون 24-10×6749/1 g است که اندکی بیش از جرم پروتون (24-10×6726/1 گرم) میباشد.
http://daneshnameh.roshd.ir/mavara/i.../e/ec/hhhh.jpg
معادله واکنش نوترونی
گسیل نوترون برای اولین بار در سال 1932 در ضمن بمباران بریلیم با ذرات آشکار شد. درنتیجه گیراندازی ذره آلفا توسط هسته بریلیم ، هسته کربن تشکیل و نوترون گسیل شد. بعدها شمار زیادی واکنشهای هستهای کشف شد که نوترون آزاد میکردند.
انواع نوترون
- نوترونهای سرد
- نوترونهای کند نوترونهای حرارتی)
- نوترونهای تند نوترونهای سریع)
- نوترونهای فوق سریع نوترونهای نسبیتی)
چشمه تولید نوترون
برای بدست آوردن نوترون مثل سابق واکنش ذره آلفا با بریلیم معمول است. حتی اکنون نیز آمپولهای محتوی آمیزه ای از ماده پرتوزای آلفا و گرد بریلیم بعنوان چشمه تراکم نوترون بکار میرود. چنین چشمه نوترونی را در نزدیکی اتاقک ابر ویلسون در حال کار قرار میدهیم که در آن لایه نازکی از ماده محتوی هیدروژن مثلاً پارافین قراردارد.
روی عکسی که از این اتاقک گرفته شود، ردهایی مشاهده میشود که از این لایه خارج میشوند. چنانکه میتوان از روی جنس یونش پی برد که اینها ردهای پروتون هستند. تمام ردها به طرف جلو هستند. آنها با پرتونهایی ایجاد شدهاند که بعلت برخورد نوترونهای تند گسیل شده از چشمه از لایه خارج شده اند. خود نوترونها که از اتاقک میگذرند ردی ندارند.
بنابراین ، نوترونها یونش قابل ملاحظهای تولید نمیکنند، یعنی برخلاف ذرات باردار آنها با الکترونها عملاً اندر کنش ندارند. نوترونها با گذر از میان ماده فقط با هسته های اتمی اندرکنش میکنند. ولی نظر به اینکه اندازه هستهها خیلی کوچک است، برخورد نوترونها با آنها خیلی بندرت صورت میگیرد.
http://daneshnameh.roshd.ir/mavara/i.../a/ac/atom.jpg
آشکارسازی باریکه نوترونی
برای اینکه نوترون یک ذره خنثی میباشد، از مکانیزمهای آشکارسازی ذرات باردار نمیتوان برای آشکار سازی نوترون استفاده کرد. اخیرا دانشمندان بکمک آشکارسازهای کوانتومی ، تداخل سنجهای نوترونی ، اسپکترومتر جرمی کوانتومی ، برخوردهای ذرات بنیادی ، بمباران نوترونی مواد و نیز واکنشهای هستهای از جمله واکنش زنجیری شکافت نوترونها را آشکارسازی نموده اند.
|
اکنون ساعت 10:12 PM برپایه ساعت جهانی (GMT - گرینویچ) +3.5 می باشد. |
|
Powered by vBulletin® Version 3.8.4 Copyright , Jelsoft Enterprices مدیریت توسط کورش نعلینی
استفاده از مطالب پی سی سیتی بدون ذکر منبع هم پیگرد قانونی ندارد!! (این دیگه به انصاف خودتونه !!)
(اگر مطلبی از شما در سایت ما بدون ذکر نامتان استفاده شده مارا خبر کنید تا آنرا اصلاح کنیم)