شاخههاي علم هوش مصنوعي
امروزه دانش مدرن هوش مصنوعي به دو دسته اصلي تقسيم ميشود: يكي <هوش مصنوعي سمبوليك يا نمادين> (Symbolic AI) و ديگري هوش غيرسمبوليك كه پيوندگرا (Connection AI) نيز ناميده ميشود.
هوش مصنوعي سمبوليك از رهيافتي مبتني بر محاسبات آماري پيروي ميكند و اغلب تحت عنوان <يادگيري ماشين> يا (Machine Learning) طبقهبندي ميشود. هوش سمبوليك ميكوشد سيستم و قواعد آن را در قالب سمبولها بيان كند و با نگاشت اطلاعات به سمبولها و قوانين به حل مسئله بپردازد. در ميان معروفترين شاخههاي هوش مصنوعي سمبوليك ميتوان به سيستمهاي خبره (Expert Systems) و شبكههاي Bayesian اشاره كرد.
يك سيستم خبره ميتواند حجم عظيمي از دادهها را پردازش نمايد و بر اساس تكنيكهاي آماري، نتايج دقيقي را تهيه كند. شبكههاي Bayesian يك تكنيك محاسباتي براي ايجاد ساختارهاي اطلاعاتي و تهيه استنتاجهاي منطقي از روي اطلاعاتي است كه به كمك روشهاي آمار و احتمال به دست آمدهاند. بنابراين در هوش سمبوليك، منظور از <يادگيري ماشين> استفاده از الگوريتمهاي تشخيص الگوها، تحليل و طبقهبندي اطلاعات است.
اما هوش پيوندگرا متكي بر يك منطق استقرايي است و از رهيافت <آموزش/ بهبود سيستم از طريق تكرار> بهره ميگيرد. اين آموزشها نه بر اساس نتايج و تحليلهاي دقيق آماري، بلكه مبتني بر شيوه آزمون و خطا و <يادگيري از راه تجربه> است. در هوش مصنوعي پيوندگرا، قواعد از ابتدا در اختيار سيستم قرار نميگيرد، بلكه سيستم از طريق تجربه، خودش قوانين را استخراج ميكند. متدهاي ايجاد شبكههاي عصبي (Neural Networks) و نيز بهكارگيري منطق فازي (Fuzzy Logic) در اين دسته قرار ميگيرند.
براي درك بهتر تفاوت ميان اين دو شيوه به يك مثال توجه كنيد. فرض كنيد ميخواهيم يك سيستم OCR بسازيم. سيستم OCR نرمافزاري است كه پس از اسكن كردن يك تكه نوشته روي كاغذ ميتواند متن روي آن را استخراج كند و به كاراكترهاي متني تبديل نمايد.
بديهي است كه چنين نرمافزاري به نوعي هوشمندي نياز دارد. اين هوشمندي را با دو رهيافت متفاوت ميتوان فراهم كرد. اگر از روش سمبوليك استفاده كنيم، قاعدتاً بايد الگوي هندسي تمام حروف و اعداد را در حالتهاي مختلف در بانك اطلاعاتي سيستم تعريف كنيم و سپس متن اسكن شده را با اين الگوها مقايسه كنيم تا بتوانيم متن را استخراج نماييم. در اينجا الگوهاي حرفي-عددي يا همان سمبولها پايه و اساس هوشمندي سيستم را تشكيل ميدهند. روش دوم يا متد <پيوندگرا> اين است كه يك سيستم هوشمند غيرسمبوليك درست كنيم و متنهاي متعددي را يك به يك به آن بدهيم تا آرام آرام آموزش ببيند و سيستم را بهينه كند. در اينجا سيستم هوشمند ميتواند مثلاً يك شبكه عصبي يا مدل مخفي ماركوف باشد. در اين شيوه سمبولها پايه هوشمندي نيستند، بلكه فعاليتهاي سلسله اعصاب يك شبكه و چگونگي پيوند ميان آنها مبناي هوشمندي را تشكيل ميدهند.
در طول دهههاي 1960 و 1970 به دنبال ابداع اولين برنامه نرمافزاري موفق در گروه سيستمهاي مبتني بر دانش
(Knowledge-based) توسط جوئل موزس، سيستمهاي هوش سمبوليك به يك جريان مهم تبديل شد. ايده و مدل شبكههاي عصبي ابتدا در دهه 1940 توسط Warren McCulloch و Walter Pitts معرفي شد. سپس در دهه 1950 كارهاي روزنبالت (Rosenblatt) درمورد شبكههاي دولايه مورد توجه قرارگرفت. در 1974 الگوريتم back propagation توسط Paul Werbos معرفي شد، ولي متدولوژي شبكههاي عصبي عمدتاً از دهه 1980 به اين سو رشد زيادي پيدا كرد و مورد استقبال دانشمندان قرار گرفت. منطق فازي ابتدا توسط پروفسور لطفي زاده، در 1965 معرفي شد و از آن زمان به بعد توسط خود او و ديگر دانشمندان دنبال شد.
در دهه 1980 تلاشهاي دانشمندان ژاپني براي كاربردي كردن منطق فازي به ترويج و معرفي منطق فازي كمك زيادي كرد. مثلاً طراحي و شبيه سازي سيستم كنترل فازي براي راهآهن Sendai توسط دو دانشمند به نامهايYasunobu و Miyamoto در 1985، نمايش كاربرد سيستمهاي كنترل فازي از طريق چند تراشه مبتني بر منطق فازي در آزمون <پاندول معكوس> توسط Takeshi Yamakawa در همايش بينالمللي پژوهشگران منطق فازي در توكيو در 1987 و نيز استفاده از سيستمهاي فازي در شبكه مونو ريل توكيو و نيز و معرفي سيستم ترمز ABS مبتني بر كنترلرهاي فازي توسط اتومبيلسازي هوندا در همين دهه تاثير زيادي در توجه مجدد دانشمندان جهان به اين حوزه از علم داشت.
|