| مقالات و موضوعات علمی در این تالار مقالات و مطالب علمی قرار داده خواهد شد توجه شود که مقالات علمی و دانشگاهی با اخبار علمی تفاوت دارد و بخش مربوطه ی اخبار علمی به صورت جداگانه ایجاد شده است |

10-23-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
واکنشهای هستهای
واکنشهای هستهای
واکنشهای هستهای (Reactions Nuclear)
تبدیلات خود بخودی یا مصنوعی بعضی از هستههای اتمی به هسته دیگر که نتیجه بهم خوردن ترکیب ساختمان هسته یا تغییر در تعداد نوکلئونها (ذرات هستهای) است واکنشهای هستهای نام دارند.
روشهای انجام واکنشهای هستهای
- تجزیه کامل تمامی هستهها زمانی که بوسیله یک ذره یا انرژی فوق العاده زیاد برخورد کند (یا ذره دیگری جذب کنند) معمولا نوترون است.
- شکست هسته به دو هسته غیر مساوی توأم با انتشار پروتون ، نوترون ، ذره آلفا ، اشعه گاما و واکنشهای ترکیب هستهای که تشکیل یک هسته سنگینتر در اثر تجدید ساختمان هسته عناصر سبکتر که همراه با آزاد شدن مقادیر زیاد انرژی است ، صورت میگیرد.
- انرژی حاصل از واکنشهای ترکیب یا (همجوشی) 8 برابر بیشتر از انرژی هستهای واکنشهای شکست هستهای است.
راههای مختلف تولید انرژی هستهای
- شکافت هستهای
- همجوشی هستهای
شکافت هستهای (Nuclear Fission)
فرض می شود نوترون منفردی به یک قطعه ایزوتوپ 235U نفوذ کند در اثر برخورد به هسته اتم 235U ، اورانیوم به دو قسمت شکسته میشود، مقادیر زیادی نیز انرژی آزاد میگردد. در حدود (200Mev) اما مسئله مهمتر اینکه نتیجه شکستن هسته 235U آزادی دو نوترون است که میتواند دو هسته دیگر را شکسته و چهار نوترون را بوجود آورد.
این چهار نوترون نیز چهار هسته 235U را میشکند چهار هسته شکسته شده تولید هشت نوترون میکنند که قادر به شکستن همین تعداد هسته اورانیوم میباشند، سپس شکست هستهای و آزاد شدن نوترونها بصورت زنجیروار به سرعت تکثیر و توسعه مییابد.
در هر دوره تعداد نوترونها دو برابر میشود، در یک لحظه واکنش زنجیری خود بخودی شکست هستهای شروع میگردد. در واکنشهای کنترل شده تعداد شکست در واحد زمان و نیز مقدار انرژی به تدریج افزایش یافته و پس از رسیدن به مقداری دلخواه ثابت نگهداشته میشود. فرض کنیم یک ذره (a) به یک هسته ساکن (x) برخورد کند در نتیجه در واکنشهای هستهای هسته (y) و ذره (b) تولید میشود که این واکنش را بصورت زیر مینویسم:
a + x → b + y
مراحل شکست 235U
1n + 235U → 234U → 144Ba+89Kr + 3 1n
در واکنش اخیر در نتیجه برخورد نوترون حرارتی به 235U آن را به 235U تحریک شده تبدیل میکند. نهایتا اورانیوم تحریک شده نیز بعد از شکافت ، به باریم و کریپتون و سه تا نوترون تولید میشود.
مواد قابل شکست (Fissionable Materials)
موادی که وقتی تحت تابش نوترون قرار میگیرند انجام یک واکنش شکست هسته ای را ممکن می سازند چنین خاصیتی در عناصر زیر وجود دارد: 239Pu ، 235U ، 235U ، ایزوتوپ 233U ، 235U بطور مصنوعی در راکتورهای هستهای با تاباندن نوترون به 233Th بوجود میآید.
محصولات شکست اورانیوم (Uranium Fission Puroduets)
زمانی که هسته اتمی 235U به دو قسمت شکسته میشود عناصر زیر تولید میشوند: استرتیوم 90 ، کریپتون 91 ، ایتریوم 91 ، زیرکونیوم 95 ، 126I ، 137U ، باریم 142 ، سریم 144 قابل ذکر هستند.
همجوش هستهای (Nuclear Fusion)
همجوشی هستهای عبارت است از اتحاد عناصر سبک برای تشکیل عناصر سنگین تر که نوع واکنش را واکنش همجوشی گویند تا بحال در انفجار بمب هیدروژنی قوی و بسیار خوب تشخیص داده شده است. این واکنش برای انسان چندان مفید نیست و بنابراین دانشمندان بطور جدی کوشش می کنند تا واکنش همجوشی را کنترل کنند یعنی در کیف کاهش سرعت واکنش به درجهای که بتواند برای مقاصد صلح جویانه مفید باشد.
در مرحله اول این واکنشها بصورت کنترل شده برای تولید برق استفاده میشود. همچنین انرژی تولید شده در این واکنش 8 برابر انرژی تولید شده سر در شکافت هستهای میباشد. منشأ انرژی تابشی خورشید و دیگر ستارهها یک سری از واکنشهای هستهای انرژی زا است. اتمهایی که دراین واکنشها در درون ستاره شرکت میکنند کاملا یونیزهاند. یعنی تمامی الکترونها از آن کنده شده است. چنین مجموعهای از ذرات باردا را پلاسما مینامند.
دوتریوم و تریتیوم ایزوتوپهای هیدروژن مواد قابل احتراق همجوشی هستهای را تشکیل میدهند. هسته دوتریوم از یک نوترون و یک پروتون تشکیل مییابد. هسته تریتیوم دارای دو نوترون و یک پروتون است.
سوختهای همجوشی
ملاحظات فرآیندهای طبیعی و نتایج حاصل از آنها نشان داده است که واکنشهای همجوشی گوناگونی وجود دارد. از جمله از واکنشهای همجوشی هستهای واکنش دوترون با تریتیوم میباشد.
معادله واکنشهای همجوشی هستهای
نخستین واکنش همجوشی قابل کنترل توسط رابطه زیر ارائه شد (ترکیب ایزوتوپهای هیدوژن)
2H + 3H → 1n + 4He
در این واکنش انرژیی معادل 17.6 Mev آزاد میشود، که از آن میشود در کادبردهای صنعتی و نظامی استفاده نمود.
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
|

10-23-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
همجوشی هستهای
همجوشی هستهای
مقدمه
از دیرباز آرزوی بشر دستیابی به منبعی از انرژی بوده که علاوه بر آنکه بتواند مدت مدیدی از آن استفاده کند، تولید پسماندهای خطرناک نیز در پی نداشته باشد. اکنون در هزاره سوم میلادی این آرزوی به ظاهر دست نیافتنی کم کم به واقعیت میپیوندد. اکنون بشر خود را آماده میکند تا با ساخت اولین رآکتور گرما هستهای (همجوشی هستهای) آرزوی نیاکان خود را تحقق بخشد. سوختی پاک و ارزان به نام هیدروژن انرژی تولیدی سرشار و پسماندی بسیار پاک به نام هلیوم. اکنون به واکنشهای گرما هستهای و راهکارهای استفاده از آن میپردازیم.
خورشید و ستارگان
سالهاست که دانشمندان واکنشی را که در خورشید و ستارگان رخ داده و در آن انرژی تولید میکند کشف کردهاند. این واکنش عبارت است از ترکیب (برخورد) هستههای چهار اتم هیدروژن معمولی و تولید یک هسته اتم هلیوم. اما مشکلی سر راه این نظریه است. بالاترین دمایی که در خورشید وجود دارد مربوط به مرکز آن است که برابر 15ضرب در 10 به توان 6 میباشد. در حالی که در ستارگان بزرگتر این دما به 20 ضرب در ده به توان 6 میرسد. به همین خاطر تصور بر این است که آن واکنش معروف ترکیب چهار اتم هیدروژن معمولی و تولید یک اتم هلیوم در سایر ستارگان بزرگ نیست که باعث تولید انرژی میشود.
بلکه احتمالا چرخه کربن در آنها به کمک آمده و کوره آنها را روشن نگه میدارد. منظور از چرخه کربن آن چرخهای نیست که روی زمین اتفاق میافتد، بلکه به این صورت است که ابتدا یک اتم هیدروژن معمولی با یک اتم 12C ترکیب میشود (همجوشی) و یک اتم 13N به همراه یک واحد پرتو گاما را آزاد می کند. بعد این اتم با یک واپاشی به یک اتم 13C به علاوه یک پوزیترون و یک نوترینو تبدیل میشود. بعد این 13C دوباره با یک اتم هیدروژن ترکیب میشود و 14N و یک واحد گاما حاصل میشود.
دوباره در اثر ترکیب این نیتروژن با یک هیدروژن معمولی اتم 15O و یک واحد گاما تولید میشود و 12C واپاشی کرده و 15N به علاوه یک پوزیترون و یک نوترینو را بوجود میآورد. و دست آخر با ترکیب 15N با یک هیدروژن معمولی 12C به علاوه یک اتم هلیوم بدست میآید.
دیدید که در این چرخه 12C نه مصرف شد و نه بوجود آمد، بلکه فقط نقش کاتالیزگر را داشت. این واکنشها به ترتیب و پشت سر هم انجام میشوند. و واکنش اصلی همان تبدیل چهار اتم هیدروژن به یک اتم هلیوم است. مزیت چرخه کربن این است که سرعت کار را خیلی بالا میبرد. ولی اشکالی که دارد این است که در دمای حد اقل20 ضرب در ده به توان 6 شروع میشود. بنابراین احتمال زیادی میرود که در ستارههای بزرگتر چرخه کربن باعث تولید انرژی میشود.
محصور سازی
یک تعریف ساده و پایهای از همجوشی عبارت است از فرو رفتن هستههای چند اتم سبکتر و تشکیل یک هسته سنگینتر. مثلا واکنش کلی همجوشی که در خورشید رخ میدهد عبارت است از برخورد هستههای چهار اتم هیدروژن و تبدیل آنها به یک اتم هلیوم. تا اینجا ساده به نظر میرسد، ولی مشکلی اساسی سر راه است میدانید هسته از ذرات ریزی تشکیل شده است که پروتون و نوترون جزء لاینفک آن هستند. نوترون بدون بار و پروتون با بار مثبت که سایر بارهای مثبت را به شدت از خود میراند. مشکل مشخص شد؟ بله … اگر پروتونها (هستههای هیدروژن) یکدیگر را دفع میکنند، چگونه میتوان آنها را در همجوشی شرکت داد؟
همانطور که حدس زدید راه حل اساسی آن است که به این پروتونها آن قدر انرژی بدهیم که انرژی جنبشی آنها بیشتر از نیروی دافعه کولنی آنها شود و پروتونها بتوانند به اندازه کافی به هم نزدیک شوند. حال چگونه این انرژی جنبشی را تولید کنیم؟ گرما راه حل خوبی است. در اثر افزایش دما جنب و جوش و به عبارت دیگر انرژی جنبشی ذرات بیشتر و بیشتر میشود، بطوری که تعداد برخوردها و شدت آنها بیشتر و بیشتر میشود. به نظر شما آیا دیگر مشکلی وجود ندارد؟ خیر ، مسئله اساسیتری سر راه است.
یک سماور پر از آب را تصور کنید. وقتی سماور را روشن میکنید با این کار به آب درون سماور گرما میدهید (انرژی منتقل میکنید). در اثر این انتقال انرژی دمای آب رفته رفته بالاتر میرود و به عبارتی جنب و جوش مولکولهای آب زیاد میشود. در این حالت بین مولکولهای آب برخوردهایی پدید میآید. هر مولکول که از شعله (یا المنت یا هر چیز دیگری) مقداری انرژی دریافت کرده است آنقدر جنب و جوش میکند تا بالاخره (به علت محدود بودن محیط سماور و آب) انرژی خود را به دیگری بدهد. مولکول بعدی نیز به نوبه خود همین عمل را انجام میدهد. بدین ترتیب رفته رفته انرژی منبع گرما در تمام آب پخش میشود و دمای آب بالا میرود. آیا وقتی بدنه سماور را لمس میکنیم هیچ گرمایی حس نمی کنیم؟ …بله حس می کنیم.
دلیلش هم برخورد مولکولهای پر انرژی آب با بدنه سماور و انتقال انرژی خود به آن. هدف ما از روشن کردن سماور گرم کردن آب بود نه سماور. امیدوارم تا اینجا پاسخ اولین مشکل اساسی بر سر راه همجوشی را دریافت کرده باشید. بله اگر اگر با صرف هزینه و زحمت بالا سوخت را به دمایی معادل میلیونها درجه کلوین برسانیم آیا این اتمها آنقدر صبر خواهند کرد تا با دیگر اتمها وارد واکنش شوند یا در اولین فرصت انرژی بالای خود را به دیواره داده و آن را نابود میکند؟ بنابراین نیاز به محصور سازی داریم، یعنی باید به طریقی اجازه ندهیم که این گرما به دیواره منتقل شود.
رسیدن به دمای بالا
شروع واکنش همجوشی به دمای بسیار بالایی نیازمند است. درست است که دمای پانزده میلیون درجه دمای بسیار بالایی است و تصور بوجود آوردنش روی زمین مشکل و کمی هم وحشتناک میباشد، ولی معمولا در زندگی روزمره دور و برمان دماهای خیلی بالایی وجود دارند و ما از آنها غافلیم. مثلا وقتی در اثر اتصالی سیمهای برق داخل جعبه تقسیم میسوزد و شما صدای جرقه آنرا میشنوید و پس از بررسی متوجه میشوید که کاملا ذوب شده فقط بخاطر دمای وحشتناکی بوده که آن داخل بوجود آمده. این دما به حدود سی - چهل هزار درجه کلوین میرسد.
البته این دما برای همجوشی حکم طفل نی سواری را دارد. یا اینکه میتوانیم با استفاده از ولتاژهای بسیار بالا قوسهای الکتریکی را از درون لولههای موئین عبور بدهیم. به این ترتیب دمای هوای داخل لوله که اکنون به پلاسما تبدیل شده به نزدیک چند میلیون درجه میرسد (که باز هم برای همجوشی کم است). یکی از بهترین راهها استفاده از لیزر است. میدانید که لیزرهایی با توانهای بسیار بالا ساخته شدهاند. مثلا نوعی از لیزر به نام لیزر نوا (NOVA) میتواند در مدت کوتاهی انرژی معادل ده به توان پنج ژول تولید کند.
اما باز هم در کنار هر مزیت معایبی هست. مثلا این لیزر تبعا انرژی زیادی مصرف میکند که حتی با صرف نظر از آن مشکل دیگری هست که میگوید، اگر انرژی تولیدی لیزر در آن مدت کوتاه باید تحویل داده بشود پس برای برقرار ماندن معیار لاوسن (حالا که مدت زمان محصور سازی پایین آمده) باید چگالی بالاتر برود. که در این مورد از تراکم و چگالی جامد هم بالاتر میرود.
انواع واکنشها
برای بهینه سازی کار رآکتورهای همجوشی و افزایش توان خروجی آنها راههای متعددی وجود دارد. یکی از این راهها انتخاب نوع واکنشی است که قرار است در رآکتور انجام بشود. واکنش زیر نوعی از واکنش همجوشی به صورتی است که در آن دو هسته سبک با یکدیگر واکنش داده و یک هسته سنگینتر را بوجود میآورند. یعنی حاصل ترکیب دو هسته دوتریم و تولید یک هسته ترتیم به علاوه یک هسته هیدروژن معمولی است. این واکنش انرژی ده میباشد. چون تفاوت انرژی بستگی هسته سنگینتر و هستههای سبکتر مقداری منفی است.
در این واکنش مقدار انرژی تولیدی برابر MeV4 میباشد. قبلا گفته شد که باید برای انجام همجوشی هستهها به اندازه کافی به هم نزدیک بشوند. این مقدار کافی حدودا معادل 3 fm میباشد. چون در این فاصلهها انرژی پتانسیل الکتروستاتیکی دو دوترون در حدود MeV 0.5 هست پس میتوانیم با این مقدار انرژی دادن به یکی از دوترونها دافعه کولنی بین دوترونها شکسته و واکنش را شروع کنیم که بعد از انجام مقدار MeV 4.5 تولید می شود (MeV 0.5 انرژی جنبشی به علاوه 4 MeV انرژی آزاد شده).
زنجیره پروتون_پروتون
پروتونها جهت تشکیل اتمهای هلیوم پیچیدهتر
تصادم میکنند و گداخته میشوند. در این فرآیند
آنها ذراتی پر انرژی نظیر نوترینو ،
پوزیترون و فوترون آزاد میکنند.
میتوانیم رآکتور خود را طوری طراحی کنیم که دور دیواره بیرونی آن لیتیوم مایع تحت فشار جریان داشته باشد. این لیتیوم مایع گرمای تولیدی اضافی را از واکنش گرفته و به آب منتقل میکند و با تبدیل آن به بخار باعث میشود که توربین و ژنراتور به حرکت در آیند و برق تولید بشود.
اما چرا لیتیم؟
قبلا دیدید که مقرون به صرفه ترین واکنش در راکتور همجوشی واکنش دوتریم - ترتیم است. در این واکنش دیدید که یک نوترون پر انرژی تولید میشد. این مسأله یعنی نوترون زایی میتواند سبب تضعیف بخشهایی از رآکتور شود. از طرفی برای محیط زیست و مخصوصا سلامتی کسانی که در اطراف رآکتور فعالیت میکنند بسیار مضر است. اما اگر لیتیوم را به عنوان خنک کننده داشته باشیم این جریان لیتیم همچنین نقش مهم کند کنندگی را بازی خواهد کرد. به این صورت که با نوترون اضافی تولید شده در واکنش ترکیب شده و سوخت گران قیمت و بسیار کمیاب رآکتور رو که همان تریتیوم است تولید میکند. واکنش دقیق آن به شکل زیر است. البته در این مورد باید ضخامت لیتیوم مایع در جریان حداقل یک متر باشد.
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
|

10-23-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
بمب هستهای
بمب هستهای
دید کلی
همه ما میدانیم چه انرژی عظیم و قابل ملاحظهای در داخل اتمها وجود دارد. این انرژی همان است که عموما آن را انرژی اتمی مینامند. اما چون این انرژی در داخل هسته اتمها وجود دارد در زبان علمی نام دقیقتر آنرا انرژی هستهای انتخاب کردهاند.
تحولاتی که به کشف بمب هستهای منجر شد
هنگامی که دانشمند ایتالیایی به نام انریکو فرمی ، تجربیات و تحقیقات خود را در زمینه عملی ساختن فعل و انفعالات زنجیری مداوم دنبال میکرد. پیش بینی میشد که این فعل و انفعال ممکن است انفجاری باشد. به همین سبب ایالات متحده آمریکا که در جنگ جهانی دوم شرکت کرده بود، در صدد برآمد تحت عنوان مبارزه ضد فاشیستی ، نظر دانشمندان اروپایی را برای ساختن سلاح اتمی جلب کند. لذا آن را به ممالک متحده فرا خواند، تا در آنجا که دور از بمبهای دشمن قرار داشت و شرایط کار بهتر بود. امکان استفاده از این انرژی انفجاری را که در سلاحهای جنگی ، مخصوصا بمب مورد بررسی قرار دهند.
پس از گرد آمدن برجسته ترین دانشمندان ، ابتدا تجسساتی در زمینه تصفیه 235U و بعد ساختن پلوتونیوم در آزمایشگاههای چند دانشگاه مهم آمریکا از جمله دانشگاههای کلمبیا و کالیفرنیا صورت گرفت. نتیجه این تجسسات ، ساختن دو کارخانه بزرگ و مجهز برای تصفیه 235U و ساختن پلوتونیوم منجر گردید. سپس آزمایشگاه عظیم و مجهز ، لوس آلاموس در ایالت نیومکزیکو تحت نظر دانشمندان معروف . جی . آر . اوپن هایمر تأسیس شد.
دانشمندان معروف دیگری از کشورهای مختلف از قبیل جیمز چارویک ، اچ بث ، آر. آرویلسون ، نیلس بوهر و غیره ، برای ساختن بمب اتمی ، یعنی سلاحی که ممکن است سبب نابودی بشر و تمدن او گردد، همکاری کردند. در نتیجه تحقیقات دانشمندان ، اساس ساختمان بمب اتمی پی ریزی شد. البته بسیاری از وسایلی که برای بمب اتمی بکار رفت، به کلی افشا نشده ، با این حال با اطلاعات وسیعی که ضمن اظهارات رئیس طرح مانهاتان بدست آمد، طرز عمل تا اندازهای روشن گردید.
تاریخچه اولین انفجارهای هستهای
- اولین بار در شانزدهم ژوید سال 1945 ، بمب اتمی کوچک ، به عنوان آزمایش ، در صحرای الاموگوردو واقع در ایالت نیومکزیکو منفجر گردید. بمب را در انتهای بمبی از فولاد نصب کرده بودند و فرمان انفجار آن از پناهگاهی به فاصله 10 کیلومتر صادر میشد. محل دیده بانی ناظر این در 17 کیلومتری نقطه انفجار بود. نتیجه این آزمایش به قدری وحشت انگیز بود، که از آنچه قبلا پیش بینی شده بود تجاوز میکرد، از جمله برج فولادین حامل بمب به کلی تبخیر شده و در جای آن گودالی وسیع بوجود آمده بود.
- کمتر از یک ماه بعد ، بمب اتمی دیگری که قدرت تخریبی آن معادل (1000 تن TNT) بود، روی بندر هیروشیما در ژاپن منفجر گردید (انفجار هیروشیما)، که در نتیجه ، آن شهر به کلی ویران شد و چند هزار مردم به هلاکت رسیدند. فقط معدودی از سکنه اطراف شهر از این بلا جان به در بردند، که هنوز بازماندگان آنان از اثرات زیان بخش تشعشعات هستهای آن رنج میبرند.
- سومین بمب اتمی روز نهم ماه اوت روی شهر ناکازاکی منفجر شد و این دو فاجعه تاریخی کشور ژاپن را در مقابل ایالت متحده آمریکا به زانو در آورد. هر چند که پس از جنگ جهانی دوم دولت آمریکا نام طرح مانهاتان را به کمسیون انرژی اتمی تبدیل کرد و فعالیت این کمسیون را به موارد استفاده از انرژی اتمی در صنعت ، پزشکی و کشاورزی تخصیص داد و در حال حاضر یک کمسیون بین المللی نیز برای استفادههای صلح جویانه از انرژی اتمی فعالیت میکنند. بنابراین هنوز هم آزمایشهای سلاحهای هستهای ادامه دارد و بدین وسیله دول بزرگ جهان در برابر یکدیگر قدرت نمایی میکنند.

ساختمان بمب هستهای
- ساختار سلاح هستهای به این صورت است که هر گاه مقدار عنصر قابل شکافت ، که از اندازه بحرانی بیشتر باشد، پدیده شکافت شروع می شود. این پدیده خیلی سریع پیشرفت میکند و با آزاد شدن مقادیر عظیم انرژی در مدت بسیار کوتاه ، انفجار مهیبی رخ میدهد. ولی از آنجایی که بمب باید در لحظه دلخواه منفجر شود، مقداری از 235U ، یا 239Pu را که خالص بوده و حجم کلی آن از اندازه بحرانی بیشتر باشد، به چند قسمت مجزا ، که هر یک از آنها از اندازه بحرانی کمتر است، تقسیم میکنند و این قسمتها را در محفظهای طوری قرار میدهند که نوترونهایی که ممکن است در هر یک از آنها آزاد شوند، در قسمت دیگر نفوذ نکنند.
در این تقسیم بندی هرگاه به هر روشی در یکی از اجزای بمب پدیده شکافت شروع شود، در لحظهای که انفجار باید صورت گیرد، رخداد پدیده شکافت زنجیری و مداوم نخواهد بود. این مواد با جرمهای زیر جرم بحرانی عنصر قابل شکافت را به هم نزدیک میکنند. تا مجموع آنها از جرم بحرانی بیشتر شود و واکنش زنجیری به وقوع بپیوندد.
نباید فراموش کرد که پیشرفت واکنش زنجیری بسیار سریع است و انفجار اتمی در قطعات اورانیوم فقط در حدود یک میلیونم ثانیه طول میکشد. لذا اگر اندازههای بحرانی زیر را به آهستگی به هم نزدیک کنیم. ممکن است قبل از تماس ، واکنش زنجیری شروع شود و شدت گرمای حاصل از شکافتهای اولیه به حدی گردد، که قبل از انفجار واقعی ، ماده قابل شکافت را متلاشی سازد و واکنش زنجیری به خاموشی گراید. برای رفع نقایص بمب هستهای به صورت زیر عمل میکنیم:
- اولا اتصال قطعات اورانیوم بوسیله یک ماده منفجره قوی نظامی صورت میگیرد.
- ثانیا محفظه ماده اتمی را بسیار ضخیم و محکم می سازد. تا در آغاز واکنش زنجیری از متلاشی شدن ماده مزبور جلوگیری کند و سپس انفجار واقعی صورت گیرد.
بهینه سازی خروجی بمب و افزایش قدرت آن
- طرق مختلف نزدیک کردن قطعات اورانیوم یا پلوتونیوم به یکدیگر هنوز یک موضوع سری نظامی است. ولی واقعیت این است که هر چه سرعت اتصال قطعات زیادتر باشد، واکنش زنجیری سریعتر و و مقدار بیشتری از هستههای اورانیوم موجود شکافته شده و بهره سلاح اتمی بیشتر میشود.
- اصولا اتصال سریع قطعات است که انفجار مهیب بمب اتمی را بوجود میآورد. اگر منعکس کنندهای به دور ماده اتمی قرار داده شود، از فرار نوترونها جلوگیری نموده و شکافت زنجیری تسریع میگردد. استفاده از منعکس کننده نوترون ، وزن بحرانی را نیز تقلیل میدهد.
- باید توجه داشت که حتی در بهترین شرایط همه اورانیوم موجود در یک بمب اتمی تحت عمل شکافتن قرار نمیگیرد و در شرایط بسیار مناسب تنها در حدود 10 درصد ماده هستهای شکافته میشود و بقیه در نتیجه ، انفجار تبدیل به غبار شده و در فضا پخش میگردند بدون اینکه هستههای آنها شکافته شوند.
- جرم بحرانی از اسرار نظامی است و ممالکی که آن را میدانند به شدت از فاش شدن آن جلوگیری میکنند. بنابرین از مطالبی که در این باره منتشر شده است، چنین بر می آید که جرم بحرانی باید بین ا و 10 کیلوگرم باشند.
- وجود جرم بحرانی ، افزایش قدرت بمب اتمی را محدود میکند. زیرا برای آنکه بتوانیم انفجاری ایجاد کنیم:
- اولا نباید مقدار سوختی کمتر از جرم بحرانی بکار بریم و این مقدار حد پایین بمب اتمی را تعیین میکند.
- ثانیا وزن هر یک از قطعات اورانیوم درون بمب نمیتواند بیش از وزن بحرانی باشد. زیرا در آن صورت هر قطعه خود به خود منفجر خواهد شد.
- ساختن بمبهای بیش از دو قطعه نیز بسیار مشکل است. زیرا اگر دو قطعه از قطعات اورانیوم ، حتی به اندازه یک میلیونم ثانیه قبل از قطعات دیگر به هم وصل شوند، انفجار اتمی صورت خواهد گرفت و باعث پراکندگی قطعات دیگر اورانیوم خواهد شد. قطعات دیگر مجال دخول در قطعات زنجیری را نخواهند یافت. به عبارت دیگر بطور کلی میزان اتمهای اورانیومی که در واکنشهای زنجیری وارد میشوند، با افزایش تعداد قطعات داخل بمب ، تقلیل مییابد و عمل انفجار ناقص میماند.
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
|

10-23-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
بمب اتمی
بمب اتمی
نگاه اجمالی
آنچه خداوند در طبیعت به ودیعه نهاده است، اگر بصورت صحیح و در جهت درست مورد استفاده قرار گیرد، وسایل رفاه و آسایش بیشتر را تأمین خواهد کرد. اما اگر این امکانات خدادادی در جهت نادرست و نامشروع مورد بهره برداری قرار گیرند، نه تنها وسیلهای برای آرامش و آسایش او نخواهد بود، بلکه بلای جان او شده و وسیلهای برای تهدید هستی او تبدیل خواهد شد. یکی از این منابع طبیعی سنگ معدن اورانیوم است که اگر بصورت درست مورد استفاده قرار گیرد، بسیار مفید بوده و به تعداد فوقالعادهای میتواند انرژی برق مورد استفاده بشر را تأمین کند، اما متأسفانه استفادههای نادرست سبب شده است که این عنصر خدادادی ماده اولیه سلاحهای مرگبار باشد که بمب اتمی یکی از این نمونهها میباشد.
تاریخچه
استفاده از انرژی هستهای به مقیاس زیاد بین سالهای 1939 تا 1945 میلادی در ایالات متحده آمریکا انجام شد. این امر زیر فشار جنگ جهانی دوم ، بصورت نتیجه تلاشهای مشترک تعداد زیادی از دانشمندان و مهندسان صورت گرفت. دست اندرکارانی که در ایالات متحده به این کار اشتغال داشتند، آمریکایی ، بریتانیایی و پناهندگان اروپایی کشورهایی بودند که زیر سلطه فاشیسم قرار داشتند. تلاش آنان این بود که قبل از آلمانیها به یک سلاح هستهای دست پیدا کنند ، این سلاح هستهای همان بمب اتمی بود.
بمب اتمی چیست؟
بمب اتمی در اصل یک راکتور هستهای کنترل نشده است که در آن یک واکنش هستهای بسیار وسیع در مدت یک میلیونیم ثانیه در سراسر ماده صورت میگیرد. بنابراین ، این واکنش با راکتور هستهای کنترل شده تفاوت دارد. در راکتور هستهای کنترل شده ، شرایط به گونهای سامان یافته است که انرژی حاصل از شکافت بسیار کندتر و اساسا با سرعت ثابت رها میشود. در این راکتور ، ماده شکافت پذیر به گونهای با مواد دیگر آمیخته میشود که بطور متوسط ، فقط یک نوترون گسیل یافته از عمل شکافت موجب شکافت هسته دیگر میشود، و واکنش زنجیری به این طریق فقط تداوم خود را حفظ میکند. اما در یک بمب اتمی ، ماده شکافتپذیر خالص است، یعنی یک متعادل کننده آمیخته نیست و طراحی آن به گونهای است که تقریبا تمام نوترونهای گسیل یافته از هر شکافت میتواند در هستههای دیگر شکافت ایجاد کند.
عناصر اصلی سازنده
بمب اتمی در طول جنگ جهانی دوم از راکتورهای هستهای برای تولید مواد خام نوعی بمب هستهای ، یعنی برای ساختن 239Pu از 235U استفاده میشد. هر دو این عناصر میتوانند یک واکنش زنجیری کنترل نشده سریع ایجاد کنند. بمبهای هستهای یا اتمی از هر دو این مواد ساخته میشوند. تنها یک بمب اتمی که از 235U ساخته شده بود، شهر هیروشیما در ژاپن را در 6 آگوست سال 1945 میلادی ویران کرد. بمب دیگری که از 239U در ساختن آن بکار برده شده بود، سه روز بعد شهر ناکازاکی کشور ژاپن را با خاک یکسان ساخت.
عواقب ناشی از بمب اتمی
یک مسئله فرعی ، ریزشهای رادیواکتیو حاصل از آزمایش بمبهای اتمی است. در انفجار بمب اتمی مقدار قابل توجهی محصولات شکافت رادیواکتیو پراکنده میشوند. این مواد بوسیله باد از یک بخش جهان به نقاط دیگر آن منتقل میشوند و بوسیله باران و برف از جو زمین فرو میریزند. بعضی از این مواد رادیواکتیو طول عمر زیادی دارند، لذا بوسیله مواد غذایی گیاهی جذب شده و بوسیله مردم و حیوانات خورده میشوند. معلوم شده است که اینگونه مواد رادیواکتیو آثار ژنتیکی و همچنین آثار جسمانی زیان آوری دارند. یکی از فراوانترین محصولات حاصل از شکافت 235U یا 239Pu ، که از لحاظ شیمیایی شبیه 4020Ga است. بنابراین وقتی که 90Sr حاصل از ریزشهای رادیواکتیو وارد بدن میشود، به ماده استخوانی بدن راه مییابد. این عنصر میتواند با گسیل ذرات بتا با انرژی 0.54 میلیون الکترون ولت (نیم عمر 28 سال) نابود میشوند، که میتواند به سلولها آسیب رسانده و موجب بروز انواع بیماریها از قبیل تومور استخوان ، لوکمیا و ... ، بخصوص در کودکان در حال رشد ، میشود.
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
|

10-23-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
اورانیوم
اورانیوم
اطلاعات اولیه
اورانیوم یکی از عناصر شیمیایی جدول تناوبی است که نماد آن ، U و عدد اتمی آن 92 میباشد. اورانیوم که یک عنصر سنگین ، سمی ، فلزی ، رادیواکتیو و براق به رنگ سفید مایل به نقرهای میباشد، به گروه آکتیندها تعلق داشته و ایزوتوپ 235 آن برای سوخت راکتورهای هستهای و سلاحهای هستهای استفاده میشود.
معمولا اورانیوم در مقادیر بسیار ناچیز در صخرهها ، خاک ، آب ، گیاهان و جانوران از جمله انسان یافت میشود.
خصوصیتهای قابل توجه
اورانیوم هنگام عمل پالایش به رنگ سفید مایل به نقرهای فلزی با خاصیت رادیواکتیوی ضعیف میباشد که کمی از فولاد نرمتر است. این فلز چکشخار ، رسانای جریان الکتریسیته و کمی Paramagnetic میباشد. چگالی اورانیوم 65% بیشتر از چگالیسرب میباشد. اگر اورانیوم بهخوبی جدا شود، بشدت از آب سرد متاثر شده و در برابر هوا اکسید میشود. اورانیوم استخراج شده از معادن ، میتواند بهصورت شیمیایی به دیاکسید اورانیوم و دیگر گونههای قابل استفاده در صنعت تبدیل شود.
گونههای اورانیوم در صنعت
اورانیوم در صنعت سه گونه دارد:
- آلفا (Orthohombic) که تا دمای 667.7 درجه پایدار است.
- بتا (Tetragonal) که از دمای 667.7 تا 774.8 درجه پایدار است.
- گاما (Body-centered cubic) که از دمای 774.8 درجه تا نقطه ذوب پایدار است. ( این رساناترین و چکشخوارترین گونه اورانیوم میباشد.)
دو ایزوتوپ مهم ان U235 و U238> میباشند که U235 مهمترین برای راکتورهای و سلاحهای هستهای است. چرا که این ایزوتوپ تنها ایزوتوپی است که طبیعت وجود دارد و در هر مقدار ممکن توسط نوترونهای حرارتی شکافته میشود. ایزوتوپ U238 نیز از این جهت مهم است که نوترونها را برای تولید ایزوتوپ رادیواکتیو جذب کرده و آن را به ایزوتوپ Pu239 پلوتونیوم تجزیه میکند. ایزوتوپ مصنوعی U233 نیز شکافته شده و توسط بمباران نوترونی Thorium232 بوجود میآید.
اورانیوم اولین عنصر یافته شده بود که میتوانست شکافته شود. برای نمونه با بمباران آرام نوترونی ایزوتوپ U235 آن به ایزوتوپ کوتاه عمر U236 تبدیل شده و بلافاصله به دو هسته کوچکتر تقسیم میشود که این عمل انرژی آزاد کرده و نوترونهای بیشتری تولید میکند.
اگر این نوترونها توسط هسته U235 دیگری جذب شوند، عملکرد حلقه هستهای دوباره اتفاق میافتد و اگر چیزی برای جذب نوترونها وجود نداشته باشد، به حالت انفجاری در میآیند. اولین بمب اتمی با این اصل جواب داد (شکاف هستهای). نام دقیقتر برای این بمبها و بمبهای هیدروژنی(آمیزش هستهای) ، سلاحهای هستهای میباشد.
کاربردها
فلز اورانیوم بسیار سنگین و پرچگالی میباشد.
- اورانیوم خالی توسط بعضی از ارتشها برای ساخت محافظ برای تانکها و ساخت قسمتهایی از موشکها و ادوات جنگی استفاده میشود. ارتشها همچنین از اورانیوم غنیشده برای سوخت ناوگان خود و زیردریاییها و همچنین سلاحهای هستهای استفاده میکنند. سوخت استفاده شده در راکتورهای ناوگان ایالات متحده معمولا اورانیوم U235 غنی شده میباشد. اورانیوم موجود در سلاحهای هستهای بشدت غنی میشوند که این مقدار بصورت تقریبی 90% میباشد.
- مهمترین کاربرد اورانیوم در بخش غیر نظامی تامین سوخت دستگاههای تولید نیروی هستهای است که در آنها سوخت U235 به میزان 2الی3% غنی میشود. اورانیوم تخلیه شده در هلیکوپترها و هواپیماها بهعنوان وزن متقابل بر هر بار استفاده میشود.
- لعاب ظروف سفالی از مقدار کمی اورانیوم طبیعی تشکیل شده است ( که داخل فرایند غنی سازی نمیشود ) که این عنصر برای اضافه کردن رنگ با آن اضافه میشود.
- نیمه عمر طولانی ایزوتوپ اورانیوم 238 آن را برای تخمین سن سنگهای آتشفشانی مناسب میسازد.
- U235 در راکتورهای هستهای Breeder به پلوتونیوم تبدیل میشود و پلوتونیوم نیز در ساخت بمبهای هیدروژنی مورد استفاده قرار میگیرد.
- استات اورانیوم در شیمی تحلیلی کاربرد دارد.
- برخی از لوازم نوردهنده از اورانیوم و برخی در مواد شیمیایی عکاسی مانند نیترات اورانیوم استفاده میکنند.
- معمولا کودهای فسفاتی حاوی مقدار زیادی اورانیوم طبیعی میباشند، چرا که مواد کانی که آنها از آنجا گرفته شدهاند، حاوی مقدار زیادی اورانیوم میباشند.
- فلز اورانیوم برای اهداف اشعه ایکس در ساخت این اشعه با انرژی بالا استفاده میشود.
- این عنصر در وسایل Interial Guidance و Gyro Compass استفاده میشود.
تاریخچه
بارگذاری میلههای سوخت اتمی در راکتور
استفاده از اورانیوم به شکل اکسید طبیعی آن به سال 79 میلادی بر میگردد، یعنی زمانی که این عنصر برای اضافه کردن رنگ زرد به سفال لعابدار استفاده شد (شیشه زرد با یک در صد اورانیوم در نزدیکی ناپل ایتالیا کشف شده است. ) کشف این عنصر به شیمیدان آلمانی به نام "مارتین هنریچ کلاپرس" اختصاص داده شد که در سال 1789 اورانیوم را به صورت قسمتی از کانی که آن را pitchblende نامید، کشف شد. نام این عنصر را بر اساس سیاره اورانوس که هشت سال قبل از آن کشف شده بود برگزیده شد. این عنصر در سال 1841 به صورت فلز جداگانه توسط "eugne melchior peligot" استفاده شد.
در سال 1896 "هانری بکرل" فیزیکدان فرانسوی برای اولین بار به خاصیت رادیواکتیویته آن پی برد. در پروژه Manhattan نامهای Tuballoy و Oralloy برای اورانیوم طبیعی و اورانیوم غنی شده بکار برده شد. این اسامی هنوز نیز برای اورانیوم غنی شده و اورانیوم طبیعی بکار برده می شوند.
در آغاز قرن بیستم تفحص و جستجو برای یافتن معادن رادیو اکتیو در ایالات متحده آغاز شد. منابع رادیوم که حاوی کانیهای اورانیوم نیز میبودند، برای استفاده آنها در رنگ ساعتهای شبنما و دیگر ابزار جستجو شدند. در طی جنگ جهانی دوم اورانیوم از نظر اهداف دفاعی اهمیت پیدا کرد. در سال 1943 Union Mines Development Corporation کنگره ای را در کلرادو به منظور استفاده ارتش از قدرت اتمی در پروژه Manhattan تشکیل داد.
برای اطمینان از ذخایر کافی اورانیوم این کنگره US Atomic Enecry Act of 1946 را ایجاد و کمیسیون انرژی اتمی را بوجود آورد. در دهه 1960 ملزومات ارتش تزلزل یافت و در اواخر سال 1970 دولت برنامه تهیه اورانیوم خود را کامل کرد. همزمان با همین مساله بازار دیگری بوجود آمد که درواقع همان کارخانههای نیروگاههای هستهای اقتصادی بود.
ترکیبات
تترا فلوروئید اورانیوم UF4که به نمک سبز معروف است یک محصول میانی هگزافلورید اورانیوم میباشد. هگزا فلورید اورانیوم UF6 جامد است که در دمای بالای 56 درجه سانتیگراد بخار میشود. UF6 ترکیب اورانیوم است که برای دو فرایند غنی سازی Gaseous Diffusion و Centrifuge استفاده میشود و در صنعت با نام ساده Hex خوانده میشود.
Yellowcake اورانیوم غلیظ شده است. نام این عنصر بدلیل رنگ و شکل آن در هنگام تولید میباشد اگرچه تولید امروزه Yellowcake بیشتر به رنگ سبز مایل به سیاه میگراید تا زرد. Yellowcake تقریبا 70 تا 90 درصد اکسید اورانیوم دارد. U3O8
Diuranate آمونیوم محصول جنبی تولید Yellowcake میباشد که رنگ آن زرد درخشان میباشد که گاهی اوقات باعث اشتباه شده و Yellowcake نامیده میشود اما این نام درست این محصول نمیباشد.
پیدایش
اورانیوم عنصر طبیعی است که تقریبا در تمام سنگها آب و خاک به میزان کم یافت میشود و بنظر میرسد که مقدار آن از Antimony ، برلیوم ، کادیوم ، جیوه ، طلا ، نقره و تنگستن بیشتر باشد و این فراوانی در حد آرسنیک و مولیبدنیوم است. این عنصر در بیشتر کانیهای اورانیومی از قبیل Pitchblende، Uraninite ،Autunite ، Uranophane tobernite و Coffinite یافت میشود.
br>مقدار بیشتری از اورانیوم در موادی از قبیل صخرههای فسفاتی و کانیهایی مانند Lignite و Monazite یافت میشود که بیشتر برای مصارف اقتصادی از همین منابع استخراج میشود. از آنجا که اورانیوم نیمه عمر رادیواکتیوی طولانی 4.47x109 سال برای U-238 دارد مقدار آن همیشه در زمین ثابت میماند.
بنظر میرسد که فرو پاشی اورانیوم و واکنشهای هستهای آن با توریوم همان منبع گرمایی عظیمی است که در هسته زمین ، باعث ذوب شدن قسمت خارجی هسته زمین گردیده و باعث ایجاد حرکت پوستهای زمین میشود.
معدن اورانیوم صخره ای است که محل تمرکز اورانیومی میباشد که مقدار اقتصادی آن ، یک تا چهار پوند اکسید اورانیوم در هر تن است که تقریبا 0.05 تا 0.20 درصد اکسید اورانیوم دارد.
تولید و توزیع
اورانیوم اقتصادی از طریق کاهش هالیدهای اورانیوم با خاک فلزات قلیایی تولید میشود. همچنین فلز اورانیوم میتواند از طریق عمل الکترولیز 5KUF یا Uf4 که در (CaCl2 و NaCl حل شده است، بدست آید. اورانیوم خالص نیز از طریق تجزیه حرارتی هالیدهای اورانیوم حاصل میشود.
در سال 2001 ، مالکان راکتورهای هستهای غیر نظامی آمریکا از این کشور و منابع خارجی 21300 تن اورانیوم خریداری کردند. قیمت پرداخت شده برای هر کیلوگرم اورانیوم حدودا 26.39 دلار بود که در مقایسه با سال 1998 16% کاهش داشت. در سال 2001 ایالات متحده 1018 تن اورانیوم از 7 عملیات معدنی در غرب رود میسیسیپی تولید کرد. اورانیوم بیشتر توسط فرانسوی ها در کشورهای جهان توزیع شده است.
معمولا کشورهای بزرگتر اورانیوم بیشتری در مقایسه با کشورهای کوچکتر تولید میکنند، چرا که گسترش و توزیع اورانیوم در جهان یک شکل و یکنواخت است. کشور استرالیا ذخایر بسیار زیادی از این عنصر دارد که تقریبا 30% ذخایر دنیا را شامل میشود.
ایزوتوپها
اورانیوم طبیعی از 3 ایزوتوپ U-238, U-235, U-234 تشکیل شده است که U-238 فراوانترین آنها (99.3%) می باشد. این سه ایزوتوپ رادیو اکتیو بوده که نیمه عمر آنها عبارت است از U-235 4.5x109 سال که پایدارترین آنها می باشد. U-235 7x108 سال و U234 2.5x105 سال.
ایزوتوپهای اورانیوم میتوانند از هم جدا شوند تا تمرکز یک ایزوتوپ بر دیگری را افزایش دهند. این فرایند ، غنی سازی نام دارد. وزن U-235 برای غنی شدن باید 0.711 درصد افزایش یابد. اورانیوم م235 برای استفاده در سلاحهای هستهای و نیروگاه های اتمی مناسبتر است. این فرایند مقادیر بسیاری اورانیوم بوجود میآورد که در U-235 تخلیه می شوند و خالصترین اورانیوم یعنی U238 اورانیوم خالی یا DU نام دارد. اگر ایزوتوپ 235 بخواهد تخلیه شود باید وزنش 0.711 درصد کم شود.
هشدارها
تمام ترکیبات اورانیوم سمی و رادیو اکتیو هستند. سمی بودن این عنصر میتواند کشنده باشد. در مقادیر بسیار کم خاصیت سمی بودن این عنصر به کلیه آسیب میرساند. خواص رادیواکتیوی این عنصر نیز سیستماتیک و نظام بند است. در کل ترکیبات اورانیوم بهسختی جذب روده و ریه میشوند و خطرات رادیولوژیکی آن باقی میماند. فلز خالص اورانیوم نیز خطر آتشسوزی به همراه دارد.
فرد ممکن است با تنفس غبار اورانیوم در هوا یا خوردن و آشامیدن آب و غذا در معرض این عنصر قرار بگیرد. البته بیشتر این عمل از طریق خوردن آب و غذا صورت میگیرد. جذب روزانه اورانیوم در غذا 0.07 تا 1.1 میکروگرم میباشد. مقدار اورانیوم در هوا معمولا بسیار ناچیز است. افرادی که در کنار تاسیسات هستهای دولت و یا معادن استخراج اورانیوم زندگی میکنند، بیشتر در معرض این عنصر قرار میگیرند.
آورانیوم ممکن است که درطریق تنفس یا بلع و یا در موارد استثنایی از طریق شکافی روی پوست وارد بدن شود. اورانیوم توسط پوست جذب نمیشود و ذرات آلفای ساتع شده از این عنصر نمیتواند به پوست نفوذ کند. بنابراین اورانیومی که خارج از بدن باشد، نمیتواند به اندازه اورانیوم داخل بدن مضر و خطرناک باشد. اگر اورانیوم به بدن وارد شود، ممکن است موجب سرطان شده یا به کلیهها آسیب برساند.
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
|

10-23-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
بمب هیدروژنی
بمب هیدروژنی
دید کلی
همجوشی هستهای بنیاد اصلی بمب هیدروژنی را تشکیل میدهد. همانطور که از شکافته شدن هستههای سنگین (شکافت هستهای) ، مقدار عظیمی انرژی حاصل میشود. از پیوند هستههای سبک نیز انرژی بیشتری بدست میآید. در هر یک از دو حالت هستههایی با جرم متوسط تشکیل میگردد، که جرم آنها کمتر از جرم اولیهای است که برای تشکیل آنها بکار رفته است. در حالی که در روش شکافتن ، ماده اولیه منحصر به اورانیوم و توریم است. در روش پیوند هستهای از هر اتم سبکی مثلا اتم هیدروژن میتوان استفاده نمود.
هیدروژن مورد نیاز در واکنش همجوشی هستهای
هیدروژن موجود در تمامی آبهای اقیانوسها یکی از مواد اولیه روش پیوند هستهها را تشکیل میدهد. هیدروژن سنگین که نسبت به هیدروژن معمولی فوق العاده نایاب است برای پیوند بسیار نامناسب بوده و با وجودی که در هر 6400 اتم هیدروژن ، فقط یک اتم آن هیدروژن سنگین میباشد، بنابراین مقدار هیدروژن موجود در اقیانوسها بسیار کافی است.
شرایط لازم برای انجام پیوند هستهای
برای اینکه پیوند هستهای انجام گیرد چه شرایطی لازم است؟
- برای انجام عمل پیوند با هسته دو اتم را به شدت به هم بزنیم، تا به هم پیوند خورده و در هم ذوب شوند. اما دافعه الکترواستاتیکی هسته ، مانع بزرگی در این راه جلوی پای ما گذاشته است. در فواصل بینهایت نزدیک این دافعه فوق العاده زیاد است. البته راه حل سادهای به نظر میرسد، بدین معنی که بایستی به هستهها آنقدر سرعت دهیم که از این مانع رد شوند. میدانیم که سرعت ذرات در هر گازی بستگی به درجه حرارت آن گاز دارد. پس کافی است درجه حرارت را آنقدر بالا ببریم تا سرعت لازم برای عبور از این مانع بدست آید.

- درجه حرارت لازم برای این کار چندین میلیون درجه سانتیگراد است و چنین حرارتی در کره زمین وجود ندارد. اما اگر یک بمب اتمی در وسط تودهای از هستههای سبک منفجر شود، حرارت فوق العادهای که از انفجار بمب حاصل میشود، حرارت هستههای سبک را به قدری بالا میبرد که پیوند آنها را امکانپذیر سازد. این موضوع اساس ساختمان بمب حرارتی و هستهای (ترمونوکلئور) میباشد.
- همانطوری که در کبریت عادی برای آتش گرفتن ابتدا فسفر موجود در آن بر اثر مالش محترق میشود و آنگاه گوگرد را روشن میسازد، در بمبهای (حرارتی و هستهای) نیز ابتدا یک بمب اتمی معمولی منفجر میشود و در نتیجه انفجار تودهای از اجسام سبک را به حرارت فوق العادهای میرساند، بطوری که هستههای آنها به هم میپیوندند و آنگاه انفجار مهیبتری انجام میگیرد.
بمبهای هیدروژنی
بعد از انفجار یک بمب اتمی معمولی ، عمل سرد شدن به سرعت انجام میگیرد. بنابراین ، باید فعل و انفعالاتی را در نظر گرفت که در آنها عمل پیوند به سرعت انجام گیرد. اگر یک بمب اتمی را در مخلوطی از دوتریوم و تریتیوم محصور کرده و مجموعه را در یک محفظه با مقاومت مکانیکی زیاد قرار دهیم، پس ازانفجار بمب اتمی محیط مساعدی برای یک فعل و انفعال ترمونوکلئور (فعل و انفعال هستهای گرمازا) بوجود میآید و در اثر آن عمل پیوند هستهها انجام شده و هلیوم بوجود میآید.
تریتیوم + دوتریوم <----- هلیوم + نوترون
در نتیجه این فعل و انفعال ، حدود هفده میلیون الکترون ولت ، انرژی آزاد میشود. این میزان انرژِی نسبت به واحد وزن ماده قابل انفجار ، در حدود چهار برابر انرژی است که از شکسته شدن اورانیوم حاصل میشود. به عبارت دیگر در موقع پیوند هستههای دوتریم و تریتیوم ، انرژی بیشتر بر واحد جرم نسبت به شکافته شدن هستههای اورانیوم رها میشود.
اشکالات اساسی ساخت بمب هیدروژنی
تهیه بمب هیدروژنی دو اشکال عمده دارد که عبارتند از: - اولا باید دوتریوم و تریتیوم را به حالت مایع بکار برد. چون این دو عنصر در حالت معمول بصورت گاز هستند و در حرارت فوق العاده زیاد هم با کندی به هم پیوند میخورد. و لذا مجبورند آنها را در حرارتی معادل 250 درجه سانتیگراد زیر صفر نگه دارند. بطورری که وزن دستگاه لازم به وضع غیر عادی سنگین میشد و بمب با زحمت زیاد حمل و نقل میگردید و پرتاب آن بوسیله هواپیما بسیار مشکل بود.
- ثانیا اگر چه تهیه دوتریوم سهل است، اما تهیه تریتیوم فوق العاده مشکل و پر هزینه میباشد و برای تهیه آن باید در کوره اتمی عنصر لیتیوم را بوسیله نوترون بمباران کنند که از تجزیه متوالی آب بوسیله جریان الکتریکی ، آب سنگین بدست میآید. بطوری که دوتریوم یکی از عناصر مرکب آن است. از تجزیه آب سنگین (دوتریوم) بدست میآید.
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
|

10-23-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
غنی سازی اورانیوم
غنی سازی اورانیوم
مقدمه
سنگ معدن اورانیوم موجود در طبیعت از دو ایزوتوپ 235U به مقدار 0.7 درصد و 238U به مقدار 3.99 درصد تشکیل شده است. سنگ معدن را ابتدا در اسید حل کرده و بعد از تخلیص فلز ، اورانیوم را بصورت ترکیب با اتم فلوئور (9F ) و بصورت مولکول اورانیوم هگزا فلوراید تبدیل میکنند که به حالت گازی است. سرعت متوسط مولکولهای گازی با جرم مولکولی گاز نسبت عکس دارد.
غنی سازی با دستگاه سانتریفیوژ
سانتریفیوژ دستگاهی است که برای جدا سازی مواد از یکدیگر بر اساس وزن آنها استفاده میشود. این دستگاه مواد را با سرعت زیاد حول یک محور به گردش در میآورد و مواد متناسب با وزنی که دارند از محور فاصله میگیرند. در واقع در این روش برای جدا سازی مواد از یکدیگر از شتاب ناشی از نیروی گریز از مرکز استفاده میگردد، کاربرد عمومی این دستگاه برای جداسازی مایع از مایع و یا مایع از جامد است. سانتریفیوژهایی که برای غنی سازی اورانیوم استفاده میشود حالت خاصی دارند که برای گاز تهیه شدهاند که به آنها Hyper-Centrifuge گفته میشود. پیش از آنکه دانشمندان از این روش برای غنی سازی اورانیوم استفاده کنند از تکنولوژی خاصی بنام Gaseous Diffusion به معنی پخش و توزیع گازی استفاده میکردند.
غنی سازی با دیفوزیون گازی Gaseous Diffusion
گراهان در سال 1864 پدیدهای را کشف کرد که در آن سرعت متوسط مولکولهای گاز با معکوس جرم مولکولی گاز متناسب بود. از این پدیده که به نام دیفوزیون گازی مشهور است برای غنی سازی اورانیوم استفاده میکنند. در عمل اورانیوم هگزا فلوراید طبیعی گازی شکل را از ستونهایی که جدار آنها از اجسام متخلخل (خلل و فرج دار) درست شده است عبور میدهند. سوراخهای موجود در جسم متخلخل باید قدری بیشتر از شعاع اتمی یعنی در حدود 2.5 آنگسترم (7-25x10 سانتیمتر) باشد.
ضریب جداسازی متناسب با اختلاف جرم مولکولها است. روش غنی سازی اورانیوم تقریبا مطابق همین اصولی است که در اینجا گفته شد. با وجود این میتوان به خوبی حدس زد که پرخرج ترین مرحله تهیه سوخت اتمی همین مرحله غنی سازی ایزوتوپها است، زیرا از هر هزاران کیلو سنگ معدن اورانیوم 140 کیلوگرم اورانیوم طبیعی بدست میآید که فقط یک کیلوگرم 235U خالص در آن وجود دارد. Gaseous Diffusion از جمله تکنولوژیهایی بود که ایالات متحده طی جنگ جهانی دوم در پروژهای بنام منهتن (Manhattan) برای ساخت بمب هستهای ، با کمک انگلیس و کانادا به آن دست پیدا کرد.
در این روش با تکرار استفاده از این صفحات ***** مانند ، بصورت آبشاری (Cascade) ، میزان 235U را به مقدار دلخواه بالا میبردند. این روش اولین راهکارهای صنعتی برای غنی سازی اورانیوم بود که کابرد عملی پیدا کرد. نمونهای از سانتریفیوژهای گازی آبشاری که برای غنی سازی اورانیوم از آنها استفاده میشود. Hyper-Centrifuge اما در روش استفاده از سانتریفیوژ برای غنی سازی اورانیوم ، تعداد بسیار زیادی از این دستگاهها بصورت سری و موازی بکار میبرند تا با کمک آن بتوانند غلظت 235U را افزایش دهند.
گاز هگزافلوراید اورانیوم (UF6) در داخل سیلندرهای سانتریفیوژ تزریق میشود و با سرعت زیاد به گردش در آورده میگردد. گردش سریع سیلندر ، نیروی گریز از مرکز بسیار قوی تولید میکند و طی آن مولکولهای سنگینتر (آنهایی که شامل ایزوتوپ 238U هستند) از مرکز محور گردش دورتر میگردند و برعکس آنها که مولکولهای سبکتری دارند (حاوی ایزوتوپ 235U ) بیشتر حول محور سانتریفیوژ قرار میگیرند.
در این هنگام با استفاده از روشهای خاص گازی که حول محور جمع شده است جمع آوری شده به مرحله دیگر یعنی دستگاه سانتریفیوژ بعدی هدایت میگردد. میزان گاز هگزافلوراید اورانیوم شامل 235U که در این روش از یک واحد جداسازی بدست میآید به مراتب بیشتر از مقداری است که در روش قبلی (Gaseous Diffusion) بدست میآید، به همین علت است که امروزه در بیشتر نقاط جهان برای غنی سازی اورانیوم از این روش استفاده میکنند.
بزرگترین دستگاههای آبشاری سانتریفیوژ در کشورهایی مانند فرانسه ، آلمان ، انگلستان و چین در حال غنی سازی اورانیوم هستد. این کشورها علاوه بر مصرف داخلی به صادرات اورانیوم غنی شده نیز میپردازند. کشور ژاپن هم دارای دستگاههای بزرگ سانتریفیوژ است، اما تنها برای مصرف داخلی اورانیوم غنی شده تولید میکند.
غنی سازی اورانیم از طریق میدان مغناطیسی
یکی از روشهای غنی سازی اورانیوم استفاده از میدان مغناطیسی بسیار قوی میباشد. در این روش ابتدا اورانیوم هگزا فلوئورید را حرارت میدهند تا تبخیر شود. از طریق تبخیر ، اتمهای اورانیوم و فلوئورید از هم تفکیک میشوند. در این حالت ، اتمهای اورانیوم را به میدان مغناطیسی بسیار قوی هدایت میکنند. میدان مغناطیسی بر هستههای باردار اورانیم نیرو وارد میکند ( این نیرو به نیروی لورنتس معروف میباشد) و اتمهای اورانیوم را از مسیر مستقیم خود منحرف میکند. اما هستههای سنگین اورانیم (238U ) نسبت به هستههای سبکتر (235U ) انحراف کمتری دارند و درنتیجه از این طریق میتوان 235U را از اورانیوم طبیعی تفکیک کرد.
کاربردهای اورانیوم غنی شده
- شرایطی ایجاد کرده اند که نسبت 235U به 238U را به 5 درصد میرساند. برای این کار و تخلیص کامل اورانیوم از سانتریفوژهای بسیار قوی استفاده میکنند.
- برای ساختن نیروگاه اتمی ، اورانیوم طبیعی و یا اورانیوم غنی شده بین 1 تا 5 درصد کافی است.
- برای تهیه بمب اتمی حداقل 5 تا 6 کیلوگرم 235U صد درصد خالص نیاز است. در صنایع نظامی از این روش استفاده نمیشود و بمبهای اتمی را از 239Pu که سنتز و تخلیص شیمیایی آن بسیار سادهتر است تهیه میکنند.
نحوه تولید سوخت پلوتونیوم رادیو اکتیو
این عنصر ناپایدار را در نیروگاههای بسیار قوی میسازند که تعداد نوترونهای موجود در آنها از صدها هزار میلیارد نوترون در ثانیه در سانتیمتر مربع تجاوز میکند. عملا کلیه بمبهای اتمی موجود در زراد خانههای جهان از این عنصر درست میشود. روش ساخت این عنصر در داخل نیروگاههای هستهای به این صورت که ایزوتوپهای 238U شکست پذیر نیستند، ولی جاذب نوترون کم انرژی هستند. تعدادی از نوترونهای حاصل از شکست 235U را جذب میکنند و تبدیل به 239U میشوند. این ایزوتوپ از اورانیوم بسیار ناپایدار است و در کمتر از ده ساعت تمام اتمهای بوجود آمده تخریب میشوند.
در درون هسته پایدار 239U یکی از نوترونها خود به خود به پروتون و یک الکترون تبدیل میشود. بنابراین تعداد پروتونها یکی اضافه شده و عنصر جدید را که 93 پروتون دارد نپتونیوم مینامند که این عنصر نیز ناپایدار است و یکی از نوترونهای آن خود به خود به پروتون تبدیل شده و در نتیجه به تعداد پروتونها یکی اضافه شده و عنصر جدید پلوتونیم را که 94 پروتون دارد ایجاد میکنند. این کار حدودا در مدت یک هفته صورت میگیرد.
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
|

10-23-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
ایزوتوپهای اورانیوم
ایزوتوپهای اورانیوم
دید کلی
برحسب نظریه اتمی عنصر عبارت است از یک جسم خالص ساده که با روشهای شیمیایی نمیتوان آنرا تفکیک کرد. از ترکیب عناصر با یکدیگر اجسام مرکب بوجود میآیند. تعداد عناصر شناخته شده در طبیعت حدود 92 عنصر است. هیدروژن اولین و سادهترین عنصر و پس از آن هلیوم ، کربن ، ازت ، اکسیژن و ... فلزات روی ، مس ، آهن ، نیکل و ... و بالاخره آخرین عنصر طبیعی به شماره 92، عنصر اورانیوم است. بشر توانسته است بطور مصنوعی و به کمک واکنشهای هستهای در راکتورهای هستهای و یا به کمک شتاب دهندههای قوی بیش از 20 عنصر دیگر بسازد که تمام آنها ناپایدارند و عمر کوتاه دارند و به سرعت با انتشار پرتوهایی تخریب میشوند.
{picture=tr>
ایزوتوپهای عناصر
اتمهای یک عنصر از اجتماع ذرات بنیادی به نام پرتون ، نوترون و الکترون تشکیل یافتهاند. پروتون بار مثبت و الکترون بار منفی و نوترون فاقد بار است. تعداد پروتونها نام و محل قرار گرفتن عنصر در جدول تناوبی (جدول مندلیف) مشخص میشود. اتم اورانیوم در خانه شماره 92 قرار دارد. یعنی دارای 92 پروتون است. تعداد نوترونها در اتمهای مختلف یک عنصر همواره یکسان نیست که برای مشخص کردن آنها از کلمه ایزوتوپ استفاده میشود.
بنابراین اتمهای مختلف یک عنصر را ایزوتوپ میگویند. مثلا عنصر هیدروژن سه ایزوتوپ دارد: هیدروژن معمولی که فقط یک پروتون دارد و فاقد نوترون است. هیدروژن سنگین یک پروتون و یک نوترون دارد که به آن دوتریوم گویند و نهایتا تریتیوم که از دو نوترون و یک پروتون تشکیل شده و ناپایدار است و طی زمان ، تجزیه میشود. ایزوتوپ سنگین هیدروژن یعنی دوتریم در نیروگاههای اتمی کاربرد دارد و از الکترولیز آب بدست میآید. در جنگ دوم جهانی آلمانیها برای ساختن نیروگاه اتمی و تهیه بمب اتمی در سوئد و نروژ مقادیر بسیار زیادی آب سنگین تهیه کرده بودند که انگلیسیها متوجه منظور آلمانیها شده و مخازن و دستگاههای الکترولیز آنها را نابود کردند.
ایزوتوپهای اورانیوم
- عنصر اورانیوم ، چهار ایزوتوپ دارد که فقط دو ایزوتوپ آن به علت داشتن نیمه عمر نسبتا بالا در طبیعت و در سنگ معدن یافت میشوند. این دو ایزوتوپ عبارتند از 235U و 238U که در هر دو 92 پروتون وجود دارد ولی اولی 143 و دومی 146 نوترون دارد.
- اختلاف این دو فقط وجود 3 نوترون اضافی در ایزوتوپ سنگین است. ولی از نظر خواص شیمیایی این دو ایزوتوپ کاملا یکسان هستند و برای جداسازی آنها از یکدیگر حتما باید از خواص فیزیکی آنها یعنی اختلاف جرم ایزوتوپها استفاده کرد.
شکافت هستهای اورانیوم
ایزوتوپ 235U شکست پذیر است و در نیروگاههای اتمی از این خاصیت استفاده می شود و حرارت ایجاد شده در اثر این شکست را تبدیل به انرژی الکتریکی مینمایند. در واقع ورود یک نوترون به درون هسته این اتم سبب شکست آن شده و به ازای هر اتم شکسته شده Mev200 (دویست میلیون الکترون ولت) انرژی و دو تکه شکست و تعدادی نوترون حاصل میشود که میتوانند اتمهای دیگر را بشکنند. بنابراین در برخی از نیروگاهها ترجیح میدهند تا حدی این ایزوتوپ را در مخلوط طبیعی دو ایزوتوپ غنی کنند و بدین ترتیب مسئله غنی سازی اورانیوم مطرح میشود.
کاربرد ایزوتوپهای اورانیوم
- در راکتورهای هستهای به عنوان سوخت بکار میروند.
- در نیروگاههای هستهای برای تولید انرژی الکتریکی بکار برده میشود.
- در ساخت انواع مهمات هستهای از جمله بمبهای هستهای ، بمب هیدروژنی و ... کاربرد دارند.
- بطور کلی میتوان موارد ذیل را به عنوان مصادیق کاربرد تکنیکهای هستهای در حوزه پزشکی نام برد:
- تهیه و تولید رادیو داروی ید-131، حهت تشخیص بیماریهای تروئید و درمان آنها.
- در درمان بیماریهای سرطانی ، تومورهای مغزی و غیره بکار میگیرند.
- تهیه و تولید کیتهای رادیو دارویی جهت مراکز پزشکی هستهای.
- کنترل کیفی رادیو داروهای خوراکی و تزریقی برای تشخیص ودرمان بیماریها.
- کاربرد انرژی اتمی در بخش دامپزشکی و دامپروری.
- کاربرد تکنیکهای هستهای در مدیریت منابع آب.
- کاربرد انرژی هستهای در بخش صنایع غذایی و کشاورزی.
- کاربرد انرژی هستهای در صنایع.
- کاربرد تکنیک هستهای در شناسایی مینهای ضد نفر.
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
|

10-23-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
برق هستهای
برق هستهای
مقدمه
از مهمترین منابع استفاده صلح آمیز از انرژی اتمی ، ساخت راکتورهای هستهای جهت تولید برق میباشد. راکتور هستهای وسیلهای است که در آن فرآیند شکافت هستهای بصورت کنترل شده انجام میگیرد. در طی این فرآیند انرژی زیاد آزاد میگردد به نحوی که مثلا در اثر شکافت نیم کیلوگرم اورانیوم انرژی معادل بیش از 1500 تن زغال سنگ بدست میآید. هم اکنون در سراسر جهان ، راکتورهای متعددی در حال کار وجود دارند که بسیاری از آنها برای تولید قدرت و به منظور تبدیل آن به انرژی الکتریکی ، پارهای برای راندن کشتیها و زیردریائیها ، برخی برای تولید رادیو ایزوتوپوپها و تحقیقات علمی و گونههایی نیز برای مقاصد آزمایشی و آموزشی مورد استفاده قرار میگیرند. در راکتورهای هستهای که برای نیروگاههای اتمی طراحی شدهاند (راکتورهای قدرت) ، اتمهای اورانیوم و پلوتونیم توسط نوترونها شکافته میشوند و انرژی آزاد شده گرمای لازم را برای تولید بخار ایجاد کرده و بخار حاصله برای چرخاندن توربینهای مولد برق بکار گرفته میشوند.
انواع راکتور اتمی
راکتورهای اتمی را معمولا برحسب خنک کننده ، کند کننده ، نوع و درجه غنای سوخت در آن طبقه بندی میکنند. معروفترین راکتورهای اتمی ، راکتورهایی هستند که از آب سبک به عنوان خنک کننده و کند کننده و اورانیوم غنی شده (2 تا 4 درصد 235U) به عنوان سوخت استفاده میکنند. این راکتورها عموما تحت عنوان راکتورهای آب سبک (LWR) شناخته میشوند. راکتورهای PWR ، BWR و WWER از این دستهاند. نوع دیگر ، راکتورهایی هستند که از گاز به عنوان خنک کننده ، گرافیت به عنوان کند کننده و اورانیوم طبیعی یا کم غنی شده به عنوان سوخت استفاده میکنند. این راکتورها به گاز - گرافیت معروفند. راکتورهای GCR ، AGR و HTGR از این نوع میباشند.
راکتور PHWR راکتوری است که از آب سنگین به عنوان کند کننده و خنک کننده و از اورانیوم طبیعی به عنوان سوخت استفاده میکند. نوع کانادایی این راکتور به CANDU موسوم بوده و از کارایی خوبی برخوردار میباشد. مابقی راکتورها مثل FBR (راکتوری که از مخلوط اورانیوم و پلوتونیوم به عنوان سوخت و سدیم مایع به عنوان خنک کننده استفاده کرده و فاقد کند کننده میباشد) LWGR (راکتوری که از آب سبک به عنوان خنک کننده و از گرافیت به عنوان کند کننده استفاده میکند) از فراوانی کمتری برخوردار میباشند. در حال حاضر ، راکتورهای PWR و پس از آن به ترتیب PHWR ، WWER ، BWR فراوانترین راکتورهای قدرت در حال کار جهان میباشند.
تاریخچه
به لحاظ تاریخی اولین راکتور اتمی در آمریکا بوسیله شرکت "وستینگهاوس" و به منظور استفاده در زیر دریائیها ساخته شد. ساخت این راکتور پایه اصلی و استخوان بندی تکنولوژی فعلی نیروگاههای اتمی PWR را تشکیل داد. سپس شرکت جنرال الکتریک موفق به ساخت راکتورهایی از نوع BWR گردید. اما اولین راکتوری که اختصاصا جهت تولید برق طراحی شده ، توسط شوروی و در ژوئن 1954در "آبنینسک" نزدیک مسکو احداث گردید که بیشتر جنبه نمایشی داشت. تولید الکتریسیته از راکتورهای اتمی در مقیاس صنعتی در سال 1956 در انگلستان آغاز گردید.
تا سال 1965 روند ساخت نیروگاههای اتمی از رشد محدودی برخوردار بود، اما طی دو دهه 1966 تا 1985 جهش زیادی در ساخت نیروگاههای اتمی بوجود آمده است. این جهش طی سالهای 1972 تا 1976 که بطور متوسط هر سال 30 نیروگاه شروع به ساخت میکردند بسیار زیاد و قابل توجه است. یک دلیل آن شوک نفتی اوایل دهه 1970 میباشد که کشورهای مختلف را بر آن داشت تا جهت تأمین انرژی مورد نیاز خود بطور زاید الوصفی به انرژی هستهای روی آورند. پس از دوره جهش فوق یعنی از سال 1986 تا کنون روند ساخت نیروگاهها به شدت کاهش یافته ، بطوریکه بطور متوسط سالیانه 4 راکتور اتمی شروع به ساخت میشوند.
سهم برق هستهای در تولید برق کشورها
کشورهای مختلف در تولید برق هستهای روند گوناگونی داشتهاند. به عنوان مثال کشور انگلستان که تا سال 1965 پیشرو در ساخت نیروگاه اتمی بود، پس از آن تاریخ ، ساخت نیروگاه اتمی در این کشور کاهش یافت، اما برعکس در آمریکا به اوج خود رسید. کشور آمریکا که تا اواخر دهه 1960 تنها 17 نیروگاه اتمی داشت، در طول دهه های 1970و 1980 بیش از 90 نیروگاه اتمی دیگر ساخت. این مسئله نشان دهنده افزایش شدید تقاضای انرژی در آمریکاست. هزینه تولید برق هستهای در مقایسه با تولید برق از منابع دیگر انرژی در آمریکا کاملا قابل رقابت میباشد.
هم اکنون فرانسه با داشتن سهم 75 درصدی برق هستهای از کل تولید برق خود در صدر کشورهای جهان قرار دارد. پس از آن به ترتیب لیتوانی (73 درصد) ، بلژیک (57 درصد) ، بلغارستان و اسلواکی (47 درصد) و سوئد (48.6 درصد) میباشند. آمریکا نیز حدود 20 درصد از تولید برق خود را به برق هستهای اختصاص داده است. گرچه ساخت نیروگاههای هستهای و تولید برق هستهای در جهان از رشد انفجاری اواخر دهه 1960 تا اواسط 1980 برخوردار نیست، اما کشورهای مختلف همچنان درصدد تأمین انرژی مورد نیاز خود از طریق انرژی هستهای میباشند.
طبق پیش بینیهای به عمل آمده روند استفاده از برق هستهای تا دهههای آینده همچنان روند صعودی خواهد داشت. در این زمینه ، منطقه آسیا و اروپای شرقی به ترتیب مناطق اصلی جهان در ساخت نیروگاه هستهای خواهند بود. در این راستا ، ژاپن با ساخت نیروگاههای اتمی با ظرفیت بیش از 25000 مگا وات در صدر کشورها قرار دارد. پس از آن چین ، کره جنوبی ، قزاقستان ، رومانی ، هند و روسیه جای دارند. استفاده از انرژی هستهای در کشورهای کاندا ، آرژانتین ، فرانسه ، آلمان ، آفریقای جنوبی ، سوئیس و آمریکا تقریبا روند ثابتی را طی دو دهه آینده طی خواهد کرد.
دیدگاههای اقتصادی و زیست محیطی برق هستهای
جمهوری اسلامی ایران در فرآیند توسعه پایدار خود به تکنولوژی هستهای چه از لحاظ تأمین نیرو و ایجاد جایگزینی مناسب در عرصه انرژی و چه از نظر دیگر بهره برداریهای صلح آمیز آن در زمینههای صنعت ، کشاورزی ، پزشکی و خدمات نیاز مبرم دارد که تحقق این رسالت مهم به عهده سازمان انرژی اتمی ایران میباشد. بدیهی است در زمینه کاربرد انرژی هستهای به منظور تأمین قسمتی از برق مورد نیاز کشور قیود و فاکتورهای بسیار مهمی از جمله مسایل اقتصادی و زیست محیطی مطرح میگردند.
دیدگاه اقتصادی استفاده از برق هستهای
امروزه کشورهای بسیاری بویژه کشورهای اروپایی سهم قابل توجهی از برق مورد نیاز خود را از انرژی هستهای تأمین مینمایند. بطوری که آمار نشان میدهد از مجموع نیروگاههای هستهای نصب شده جهت تأمین برق در جهان به ترتیب 35 درصد به اروپای غربی ، 33 درصد به آمریکای شمالی ، 16.5 درصد به خاور دور ، 13درصد به اروپای شرقی و نهایتا فقط 0.74 درصد به آسیای میانه اختصاص دارد. بدون شک در توجیه ضرورت ایجاد تنوع در سیستم عرضه انرژی کشورهای مذکور ، انرژی هستهای به عنوان یک گزینه مطمئن اقتصادی مطرح است.
بنابراین ابعاد اقتصادی جایگزینی نیروگاههای هستهای با توجه به تحلیل هزینه تولید (قیمت تمام شده) برق در سیستمهای مختلف نیرو قابل تأمل و بررسی است. از اینرو در اغلب کشورها ، نیروگاههای هستهای با عملکرد مناسب اقتصادی خود از هر لحاظ با نیروگاههای سوخت فسیلی قابل رقابت میباشند. بهرحال طی چند دهه گذشته کاهش قیمت سوختهای فسیلی در بازارهای جهانی ، سبب افزایش هزینههای ساخت نیروگاههای هستهای به دلیل تشدید مقررات و ضوابط ایمنی ، طولانیتر شدن مدت ساخت و بالاخره باعث ایجاد مشکلات تأمین مالی لازم و بالا رفتن قیمت تمام شده هر واحد الکتریسیته در این نیروگاهها شده است.
از یک طرف مشاهده میشود که طی این مدت حدود 40 درصد از هزینههای چرخه سوخت هستهای کاهش یافته است و از سویی دیگر با توجه به پیشرفتهای فنی و تکنولوژی حاصل از طرحهای استاندارد و برنامه ریزیهای دقیق به منظور تأمین سرمایه اولیه مورد نیاز مطمئن و به هنگام احداث چند واحد در یک سایت برای صرفه جوییهای ناشی از مقیاس مربوط به تأسیسات و تسهیلات مشترک مورد نیاز در هر نیروگاه ، همچنان مزیت نیروگاههای اتمی از دیدگاه اقتصادی نسبت به نیروگاههای با سوخت فسیلی در اغلب کشورها حفظ شده است.
دیدگاه زیست محیطی استفاده از برق هستهای
افزایش روند روزافزون مصرف سوختهای فسیلی طی دو دهه اخیر و ایجاد انواع آلایندههای خطرناک و سمی و انتشار آن در محیط زیست انسان ، نگرانیهای جدی و مهمی برای بشر در حال و آینده به دنبال دارد. بدیهی است که این روند به دلیل اثرات مخرب و مرگبار آن در آینده تداوم چندانی نخواهد داشت. از اینرو به جهت افزایش خطرات و نگرانیها تدریجی در مورد اثرات مخرب انتشار گازهای گلخانهای ناشی از کاربرد فرآیند انرژیهای فسیلی ، واضح است که از کاربرد انرژی هستهای بعنوان یکی از رهیافتهای زیست محیطی برای مقابله با افزایش دمای کره زمین و کاهش آلودگی محیط زیست یاد میشود. همچنانکه آمار نشان میدهد، در حال حاضر نیروگاههای هستهای جهان با ظرفیت نصب شده فعلی توانستهاند سالانه از انتشار 8 درصد از گازهای دی اکسید کربن در فضا جلوگیری کنند که در این راستا تقریبا مشابه نقش نیروگاههای آبی عمل کردهاند.
چنانچه ظرفیتهای در دست بهره برداری فعلی تولید برق نیروگاههای هستهای ، از طریق نیروگاههای با خوراک ذغال سنگ تأمین میشد، سالانه بالغ بر 1800 میلیون تن دی اکسید کربن ، چندین میلیون تن گازهای خطرناک دی اکسید گوگرد و نیتروژن ، حدود 70 میلیون تن خاکستر و معادل 90 هزار تن فلزات سنگین در فضا و محیط زیست انسان منتشر میشد که مضرات آن غیرقابل انکار است. لذا در صورت رفع موانع و مسایل سیاسی مربوط به گسترش انرژی هستهای در جهان بویژه در کشورهای در حال توسعه و جهان سوم ، این انرژی در دهههای آینده نقش مهمی در کاهش آلودگی و انتشار گازهای گلخانهای ایفا خواهد نمود.
در حالیکه آلودگیهای ناشی از نیروگاههای فسیلی سبب وقوع حوادث و مشکلات بسیار زیاد بر محیط زیست و انسانها میشود، سوخت هستهای گازهای سمی و مضر تولید نمیکند و مشکل زبالههای اتمی نیز تا حد قابل قبولی رفع شده است، چرا که در مورد مسایل پسمانداری با توجه به کم بودن حجم زبالههای هستهای و پیشرفتهای علوم هستهای بدست آمده در این زمینه در دفن نهایی این زبالهها در صخرههای عمیق زیرزمینی با توجه به حفاظت و استتار ایمنی کامل ، مشکلات موجود تا حدود زیادی از نظر فنی حل شده است و طبیعتا در مورد کشور ما نیز تا زمان لازم برای دفع نهایی پسماندهای هستهای ، مسائل اجتماعی باقیمانده از نظر تکنولوژیکی کاملا مرتفع خواهد شد.
از سوی دیگر بنظر میرسد که بیشترین اعتراضات و مخالفتها در زمینه استفاده از انرژی اتمی بخاطر وقوع حوادث و انفجارات در برخی از نیروگاههای هستهای نظیر حادثه اخیر در نیروگاه چرنوبیل میباشد، این در حالی است که براساس مطالعات بعمل آمده احتمال وقوع حوادثی که منجر به مرگ عدهای زیاد بشود نظیر تصادف هوایی ، شکسته شدن سدها ، انفجارات زلزله ، طوفان ، سقوط سنگهای آسمانی و غیره ، بسیار بیشتر از وقایعی است که نیروگاههای اتمی میتوانند باعث گردند.
به هر حال در مورد مزایای نیروگاههای هستهای در مقایسه با نیروگاههای فسیلی صرفنظر از مسایل اقتصادی علاوه بر اندک بودن زبالههای آن میتوان به تمیزتر بودن نیروگاههای هستهای و عدم آلایندگی محیط زیست به آلایندههای خطرناکی نظیر SO2 ، NO2 ، CO ، CO2 پیشرفت تکنولوژی و استفاده هرچه بیشتر از این علم جدید ، افزایش کارایی و کاربرد تکنولوژی هستهای در سایر زمینههای صلح آمیز در کنار نیروگاههای هستهای اشاره نمود.
مقایسه هزینههای اجتماعی تولید برق در نیروگاههای فسیلی و اتمی
در مجموع ارزیابیهای اقتصادی و مطالعات بعمل آمده در مورد مقایسه هزینه تولید (قیمت تمام شده) برق در نیروگاههای رایج فسیلی کشور و نیروگاه اتمی نشان میدهد که قیمت این دو نوع منبع انرژی صرفنظر از هزینههای اجتماعی ، تقریبا نزدیک به هم و قابل رقابت با یکدیگر هستند. چنانچه قیمت مصرف انرژیهای فسیلی برای نیروگاههای کشور برمبنای قیمتهای متعارف بین المللی منظور شوند و همچنین در شرایطی که نرخ تسعیر هر دلار در کشور 8000 ریال تعیین گردد، هزینه تولید (قیمت تمام شده) هر کیلووات ساعت برق در نیروگاههای فسیلی و اتمی بشرح زیر می باشد.
در تازهترین مطالعهای که برای تعیین هزینههای اجتماعی نیروگاههای هستهای در 5 کشور اروپایی بلژیک ، آلمان ، فرانسه ، هلند و انگلستان صورت گرفته است، میزان هزینههای اجتماعی ناشی از نیروگاههای هستهای در مقایسه با نیروگاههای فسیلی بسیار پائین است. در این مطالعه هزینههای خارجی هر کیلووات ساعت برق تولیدی در نیروگاههای هستهای در حدود 0.39 سنت( معادل 31.2 ریال) برآورده شده است. بنابراین در صورتیکه هزینههای اجتماعی تولید برق را در ارزیابیهای اقتصادی نیروگاههای فسیلی و هستهای منظور نمائیم قطعا قیمت تمام شده هر کیلووات ساعت برق در نیروگاه هستهای نسبت به فسیلی بطور قابل ملاحظهای کاهش خواهد یافت.
به هر حال نیروگاههای فسیلی و هستهای هر کدام دارای مزایا و معایب خاص خود میباشند و ایجاد هر یک متناسب با مقتضیات زمانی و مکانی هر کشور خواهد بود و انتخاب نهایی و تصمیم گیری در این زمینه میبایست با توجه به فاکتورهایی از قبیل عوامل تکنولوژیکی ، ارزشی ، سیاسی ، اقتصادی و زیست محیطی توأما اتخاذ گردد. قدر مسلم ایجاد تنوع در سیستم عرضه و تأمین انرژی از استراتژیهای بسیار مهم در زمینه توسعه سیستم پایدار انرژی در هر کشور محسوب می شود. در این راستا با توجه به بررسیهای صورت گرفته ، شورای انرژی اتمی کشور مصمم به ایجاد نیروگاههای اتمی به ظرفیت کل 6000 مگاوات در سیستم عرضه انرژی کشور تا سال 1400 هجری شمسی میباشد.
چشم انداز
سایر دیدگاههای اقتصادی در مورد آینده انرژی هستهای حاکی از آن است که براساس تحلیل سطح تقاضا و منابع عرضه انرژی در جهان ، توجه به توسعه تکنولوژیهای موجود و حقایقی نظیر روند تهی شدن منابع فسیلی در دهه های آینده، مزیتهای زیست محیطی انرژی اتمی و همچنین استناد به آمار و عملکرد اقتصادی و ضریب بالای ایمنی نیروگاههای هسته ای، مضرات کمتر چرخه سوخت هسته ای نسبت به سایر گزینه های سوخت و پیشرفتهای حاصله در زمینه نیروگاههای زاینده و مهار انرژی گداخت هسته ای در طول نیم قرن آینده، بدون تردید انرژی هسته ای یکی از حاملهای قابل دسترس و مطمئن انرژی جهان در هزاره سوم میلادی به شمار میرود.
در این راستا شورای جهانی انرژی تا سال 2020 میلادی میزان افزایش عرضه انرژی هستهای را نسبت به سطح فعلی حدود 2 برابر پیش بینی مینماید. با توجه به شرایط موجود چنانچه از لحاظ اقتصادی هزینههای فرصتی فروش نفت و گاز را با قیمتهای متعارف بین المللی در محاسبات هزینه تولید (قیمت تمام شده) برای هر کیلووات برق تولیدی منظور نمائیم و همچنین تورم و افزایش احتمالی قیمتهای این حاملها (بویژه طی مدت اخیر) را براساس روند تدریجی به اتمام رسیدن منابع ذخایر نفت و گاز جهانی مد نظر قرار دهیم، یقینا در بین گزینههای انرژی موجود در جمهوری اسلامی ایران ، استفاده از حامل انرژی هستهای نزدیکترین فاصله ممکن را با قیمت تمام شده برق در نیروگاههای فسیلی خواهد داشت.
مباحث مرتبط با عنوان
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
|

10-23-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
راکتور هستهای
راکتور هستهای
دید کلی
راکتورهای هستهای دستگاههایی هستند که در آنها شکافت هستهای کنترل شده رخ میدهد. راکتورها برای تولید انرژی الکتریکی و نیز تولید نوترونها بکار میروند. اندازه و طرح راکتور بر حسب کار آن متغیر است. فرآیند شکافت که یک نوترون بوسیله یک هسته سنگین (با جرم زیاد) جذب شده و به دنبال آن به دو هسته کوچکتر همراه با آزاد سازی انرژی و چند نوترون دیگر شکافته میشود.
تاریخچه
اولین انرژی کنترل شده ناشی از شکافت هسته در دسامبر 1942 بدست آمد. با رهبری فرمی ساخت و راه اندازی یک پیل از آجرهای گرافیتی ، اورانیوم و سوخت اکسید اورانیوم با موفقیت به نتیجه رسید. این پیل هستهای ، در زیر میدان فوتبال دانشگاه شیکاگو ساخته شد و اولین راکتور هستهای فعال بود.
ساختمان راکتور
با وجود تنوع در راکتورها ، تقریبا همه آنها از اجزای یکسانی تشکیل شدهاند. این اجزا شامل سوخت ، پوشش برای سوخت ، کند کننده نوترونهای حاصله از شکافت ، خنک کنندهای برای حمل انرژی حرارتی حاصله از فرآیند شکافت ماده کنترل کننده برای کنترل نمودن میزان شکافت میباشد.
سوخت هستهای
سوخت راکتورهای هستهای باید به گونهای باشد که متحمل شکافت حاصله از نوترون بشود. پنج نوکلئید شکافت پذیر وجود دارند که در حال حاضر در راکتورها بکار میروند. 232Th ، 233U ، 235U ، 238U ، 239Pu . برخی از این نوکلئیدها برای شکافت حاصله از نوترونهای حرارتی و برخی نیز برای شکافت حاصل از نوترونهای سریع میباشند. تفاوت بین سوخت یک خاصیت در دستهبندی راکتورها است.
در کنار قابلیت شکافت ، سوخت بکار رفته در راکتور هستهای باید بتواند نیازهای دیگری را نیز تأمین کند. سوخت باید از نظر مکانیکی قوی ، از نظر شیمیایی پایدار و در مقابل تخریب تشعشعی مقاوم باشد، تا تحت تغییرات فیزیکی و شیمیایی محیط راکتور قرار نگیرد. هدایت حرارتی ماده باید بالا باشد بطوری که بتواند حرارت را خیلی راحت جابجا کند. همچنین امکان بدست آوردن ، ساخت راحت ، هزینه نسبتا پایین و خطرناک نبودن از نظر شیمیایی از دیگر فایدههای سوخت است.
غلاف سوخت راکتور
سوختهای هستهای مستقیما در داخل راکتور قرار داده نمیشوند، بلکه همواره بصورت پوشیده شده مورد استفاده قرار میگیرند. پوشش یا غلاف سوخت ، کند کننده و یا خنک کننده از آن جدا میسازد. این امر از خوردگی سوخت محافظت کرده و از گسترش محصولات شکافت حاصل از سوخت پرتو دیده به محیط اطراف جلوگیری میکند. همچنین این غلاف میتواند پشتیبان ساختاری سوخت بوده و در انتقال حرارت به آن کمک کند. ماده غلاف همانند خود سوخت باید دارای خواص خوب حرارتی و مکانیکی بوده و از نظر شیمیایی نسبت به برهمکنش با سوخت و مواد محیط پایدار باشد. همچنین لازم است غلاف دارای سطح مقطع پایینی نسبت به بر همکنشهای هستهای حاصل از نوترون بوده و در مقابل تشعشع مقاوم باشد.
مواد کند کننده نوترون
یک کند کننده مادهای است که برای کند یا حرارتی کردن نوترونهای سریع بکار میرود. هستههایی که دارای جرمی نزدیک به جرم نوترون هستند بهترین کند کننده میباشند. کند کننده برای آنکه بتواند در راکتور مورد استفاده قرار گیرد بایستی سطح مقطع جذبی پایینی نسبت به نوترون باشد. با توجه به خواص اشاره شده برای کند کننده ، چند ماده هستند که میتوان از آنها استفاده کرد. هیدروژن ، دوتریم ، بریلیوم و کربن چند نمونه از کند کنندهها میباشند. از آنجا که بریلیوم سمی است، این ماده خیلی کم به عنوان کند کننده در راکتور مورد استفاده قرار میگیرد. همچنین ایزوتوپهای هیدروژن ، به شکل آب و آب سنگین و کربن ، به شکل گرافیت به عنوان مواد کند کننده استفاده میشوند.
خنک کنندهها
گرمای حاصله از شکافت در محیط راکتور یا باید از سوخت زدوده شود و یا در نهایت این گرما بقدری زیاد شود که میلههای سوخت را ذوب کند. حرارتی که از سوخت گرفته میشود ممکن است در راکتور قدرت برای تولید برق بکار رود. از ویژگیهایی که ماده خنک کننده باید داشته باشد، هدایت حرارتی آن است تا اینکه بتواند در انتقال حرارت مؤثر باشد. همچنین پایداری شیمیایی و سطح مقطع جذب پایینتر از نوترون دو خاصیت عمده ماده خنک کننده است. نکته دیگری که باید به آن اشاره شود این است که این ماده نباید در اثر واکنشهای گاما دهنده رادیواکتیو شوند.
از مایعات و گازها به عنوان خنک کننده استفاده شده است، مانند گازهای دی اکسید کربن و هلیوم. هلیوم ایدهآل است ولی پر هزینه بوده و تهیه مقادیر زیاد آن مشکل است. خنک کنندههای مایع شامل آب ، آب سنگین و فلزات مایع هستند. از آنجا که برای جلوگیری از جوشیدن آب فشار زیادی لازم است خنک کننده ایدهآلی نیست.
مواد کنترل کننده شکافت
برای دستیابی به فرآیند شکافت کنترل شده و یا متوقف کردن یک سیستم شکافت پس از شروع ، لازم است که موادی قابل دسترس باشند که بتوانند نوترونهای اضافی را جذب کنند. مواد جاذب نوترون بر خلاف مواد دیگر مورد استفاده در محیط راکتور باید سطح مقطع جذب بالایی نسبت به نوترون داشته باشند. مواد زیادی وجود دارند که سطح مقطع جذب آنها نسبت به نوترون بالاست، ولی ماده مورد استفاده باید دارای چند خاصیت مکانیکی و شیمیایی باشد که برای این کار مفید واقع شود.
انواع راکتورها
راکتورها بر حسب نوع فرآیند شکافت به راکتورهای حرارتی ، ریع و میانی (واسطه) ، بر حسب مصرف سوخت به راکتورهای سوزاننده ، مبدل و زاینده ، بر حسب نوع سوخت به راکتورهای اورانیوم طبیعی ، راکتورهای اورانیوم غنی شده با 235U (راکتور مخلوطی Be) ، بر حسب خنک کننده به راکتورهای گاز (CO2مایع (آب ، فلز) ، بر حسب فاز سوخت کند کنندهها به راکتورهای همگن ، ناهمگن و بالاخره بر حسب کاربرد به راکتورهای قدرت ، تولید نوکلید و تحقیقاتی تقسیم میشوند.
کاربردهای راکتورهای هستهای
- راکتورها انواع مختلف دارند برخی از آنها در تحقیقات ، بعضی از آنها برای تولید رادیو ایزتوپهای پر انرژی برخی برای راندن کشتیها و برخی برای تولید برق بکار میروند.
- دوگروه اصلی راکتورهای هستهای بر اساس تقسیم بندی کاربرد آنها. راکتورهای قدرت و راکتورهای تحقیقاتی هستند. راکتورهای قدرت مولد برق بوده و راکتورهای تحقیقاتی برای تحقیقات هستهای پایه ، مطالعات کاربردی تجزیهای و تولید ایزوتوپها مورد استفاده قرار می گیرند.
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
|
|
کاربران در حال دیدن موضوع: 1 نفر (0 عضو و 1 مهمان)
|
|
|
| ابزارهای موضوع |
|
|
| نحوه نمایش |
حالت ترکیبی
|
مجوز های ارسال و ویرایش
|
شما نمیتوانید موضوع جدیدی ارسال کنید
شما امکان ارسال پاسخ را ندارید
شما نمیتوانید فایل پیوست در پست خود ضمیمه کنید
شما نمیتوانید پست های خود را ویرایش کنید
اچ تی ام ال غیر فعال می باشد
|
|
|
اکنون ساعت 01:31 PM برپایه ساعت جهانی (GMT - گرینویچ) +3.5 می باشد.
|