بازگشت   پی سی سیتی > مقالات و مباحث علمی > مقالات و موضوعات علمی

مقالات و موضوعات علمی در این تالار مقالات و مطالب علمی قرار داده خواهد شد توجه شود که مقالات علمی و دانشگاهی با اخبار علمی تفاوت دارد و بخش مربوطه ی اخبار علمی به صورت جداگانه ایجاد شده است

پاسخ
 
ابزارهای موضوع نحوه نمایش
  #1  
قدیمی 10-23-2009
رزیتا آواتار ها
رزیتا رزیتا آنلاین نیست.
مسئول و ناظر ارشد-مدیر بخش خانه داری



 
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677

9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
پیش فرض خواص نور لیزر

خواص نور لیزر


مقدمه

لیزر این نور شگفت از نظر ماهیت هیچ تفاوتی با نور عادی ندارد و خواص فیزیکی لیزر ، آنرا از نورهای ایجاد شده از سایر منابع متمایز می‌سازد. از نخستین روزهای تکنولوژی لیزر ، به خواص مشخصه آن پی برده شد. و ما بصورتی گزینشی به این خواص از ماهیت فرآیند لیزر می‌پردازیم که خود این خواص بستری عظیم برای کاربردهای وسیع این پدیده ، در علوم مختلف بخصوص صنعت و پزشکی و ... ایجاد کرده است. به جرأت می‌توان گفت پیشرفت علوم بدون تکنولوژی لیزر امکان پذیر نیست.




پهنای باریکه

از آنجا که نشر القایی ، فوتونهایی را با راستای انتشار دقیقا یکسان تولید می‌کند، استفاده از پیکربندی آینه انتهایی به تقویت گزینشی باریکه محوری که تنها قطری در حدود 1mm دارد منجر می‌شود. بدین ترتیب لیزر ، باریکه‌ای نازک و اساس موازی از نور را که معمولا دارای توزیع گاوسی از شدت است، از آینه خروجی به بیرون منتشر می‌کند. زاویه واگرایی باریکه لیزر مقداری در حدود 1mrad است، که در فاصله یک کیلومتری ، تنها قسمتی به عرض یک متر را روشن می‌کند.

هر چند که میزان واگرایی باریکه در وهله نخست توسط حد پراش روزنه خروجی تعیین می ود، ولی به ازا اپتیکی مناسب می توان همین واگرایی اندک را به مقدار زیادی تصحیح کرد. شدت زیاد، خاصیتی است که بیش از سایر موارد همراه نور لیزر است و در حقیقت لیزرها بالاترین شدتهای روی زمین ایجاد می‌کنند. از آنجا که لیزر باریکه‌ای اصولا موازی از نور را نه در تمام جهتها بلکه در راستای مشخصی نشر می‌کند، مناسبترین معیار شدت ، تابیدگی است. توان: انرژی در واحد زمان.

سطح/توان = I تابیدگی

در این اینجا منظور از توان ، توان خروجی لیزر است، نه توان ورودی به آن. با متمرکز کردن باریکه تا رسیدن به حد پراش ناشی از ابزار اپتیکی متمرکز کننده می‌توان تابیدگی را افزایش داد. به عنوان یک اصل کلی ، حداقل شعاع باریکه متمرکز شده قابل قیاس با طول موج می‌باشد. خروجی لیزرها که دارای یک توزیع گوسی از شدت می‌باشد، ماکزیمم شدت (قله یا پیک) تنها برای زمان بسیار کوتاهی قابل حصول است. و این شدت ماکزیمم (پیک) حاصل از یک لیزر تپی بطور وارون با مدت تپ متناسب است، روشها گوناگونی برای کاستن از طول تپ وجود دارد تا شدت آن افزایش یابد.
همدوسی

همدوسی خاصیتی است که به بهترین وجه نور لیزر را از سایر انواع نور متمایز می‌کند و باز هم این خاصیت ، نتیجه ماهیت فرآیند نشر القایی است. نور حاصل از منابع معمولی که توسط نشر خود به خودی کار می‌کنند، به نور غیر همدوس آشفته موسم است. در این موارد ، هیچ همبستگی بین فاز فوتونهای گوناگون وجود ندارد و در اثر تداخلهای اساسا تصادفی بین آنها ، افت و خیز محسوسی در شدت پدید می‌آید. در مقابل در لیزر ، فوتونهایی که توسط محیط برانگیخته لیزر نشر می‌شوند، با سایر فوتونهای موجود در حفره ، همفازند.

مقیاس زمانی که طی آن همبستگی فاز برقرار می‌ماند، به عنوان زمان همدوسی شناخته می‌شود. بنابراین دو نقطه در طول باریکه لیزر به فاصله‌ای کمتر از طول همدوسی ، باید فاز مرتبطی داشته باشند. طول همدوسی برای انواع مختلف لیزر متفاوت است. مهمترین کاربرد همدوسی لیزری تمام نگاری (هولوگرافی) است، که روش برای تهیه تصاویر سه بعدی به شمار می رود.
تکفامی

مشخصه بارز نور لیزر و خاصیتی که بیشترین ارتباط را با کاربردهای شیمیایی دارد، تکفامی اساسی آن است. این خاصیت از این حقیقت منشأ می‌گیرند که تمام فوتونها در اثر گذار بین دو تراز انرژی اتمی یا مولکولی مشابه ، نشر می‌شوند و بنابراین تقریبا فرکانسهای دقیقا یکسانی دارند. تعداد کمی از فرکانسها با فواصل اندک از یکدیگر ، ممکن است در عمل لیزر حضور داشته باشند، بطورری که برای رسیدن به تکفامی بهینه باید وسیله اضافی دیگری را برای گزینش فرکانس لیزر تعبیه کرد. معمولا برای این کار از یک نسخه استفاده می‌شود که عنصری اپتیکی است که درون حفره لیزر قرار می‌گیرد و به گونه‌ای تنظیم می‌شود، که تنها یک طول موج معین بتواند بین دو آینه انتهایی ، بطور نامتناهی به جلو و عقب حرکت کند.




کاربردهای مهم پهنای کم باریکه

در صنعت سازه مثلا در حفر تونلها دریابی و فاصله‌ یابی و نظارت بر آلودگی اتمسفر (امکان نظرات بر گازهای خروج از دودکش کارخانه‌ها ، با تجزیه و تحلیل نور پراکنده از روی سطح زمین امکان پذیر است.
کاربرد لیزر بر اساس شدتهای زیاد

برش و جوشکاری با لیزر ، صنعت هوافضا و نساجی ، جراحی چشم و جراحیهای دیگر، مزایای بسیار زیادی برای استفاده از لیزر در چپنین جراحیهایی وجود دارد، روش لیزری تخریبی نیست و نیازی به بیهوشی ندارد و با توجه به مدت زمان کوتاه تپها ، نیازی به بی حرکت نگهداری طولانی عضو نیست.
کاربرد همدوس لیزر

هولوگرافی (تمام نگاری) ، که از خود این روش درست قطعات خودرو تأسیسات ، ترکیدگی داخلی لاستیکهای هواپیما ، فشرده سازی اطلاعات (اعم از تصاویر و متن و ...) و بازسازی اطلاعات.
کاربرد تکفامی نور لیزری

جداسازی ایزوتوپها ، صنایع هسته‌ای.
مباحث مرتبط با عنوان
  • میزر
  • آرایشهای لیزری
  • اصول کار لیزر
  • انواع لیزر
  • ایمنی لیزری
  • تمام نگاری
  • سلاحهای لیزری
  • طیف سنجی جرمی با لیزر
  • فاصله یاب لیزری
  • فیزیک لیزر
  • پیدایش لیزر
  • لیزر الکترون آزاد
  • لیزر دی اکسید کربن
  • لیزر گاز دی اکسید کربن
  • لیزر نیم رسانا
  • لیزر هلیوم - نئون
  • لیزر یاقوت
  • لیزرهای حالت جامد
  • لیزرهای دیودی
  • لیزرهای گازی
  • همدوسی
  • ماهیت نور همدوس لیزر
  • کاربرد پزشکی لیزر
  • کاربرد لیزر در اندازه گیری و بازرسی
  • کاربرد لیزر در هولوگرافی
  • کاربرد لیزر در مصارف نظامی
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم

به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم

چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم

زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم

خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم

استاد فاضل نظری
پاسخ با نقل قول
  #2  
قدیمی 10-23-2009
رزیتا آواتار ها
رزیتا رزیتا آنلاین نیست.
مسئول و ناظر ارشد-مدیر بخش خانه داری



 
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677

9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
پیش فرض طیف سنجی جرمی با لیزر

طیف سنجی جرمی با لیزر







نوعی طیف سنج جرمی
نگاه کلی

بعد از اینکه دانشمندان توانستند عمل یونیزاسیون را توسط لیزر انجام دهند، با تلفیق این روش با طیف سنجی‌ جرمی توانستند با تبخیر نمونه و ایجاد یون ، از طریق طیف‌سنجی قادر به شناسایی یونهای ایجاد شده گردند. در روش طیف‌سنجی جرمی از یک منبع لیزر ضربانی با شدت زیاد برای تبخیر و یونش مقدار کمی از جسم جامد استفاده می‌شود. سپس یونهای مولکولی و عنصری توسط یک طیف سنج جرمی ، مجهز به تحلیلگر زمان پرواز مورد تجزیه قرار می‌گیرد. حساسیت بالا ، سرعت زیاد در کاربرد در زمینه تجزیه مواد آلی و معدنی از مزایای این روش می‌باشد.

در روش طیف‌سنجی جرمی لیزری یونهای فراوانی را می‌توان با استفاده از یک لیزر ضربانی با عمر ضربه زیاد بدست آورد. این یونها دارای انرژی جنبشی متفاوت هستند، بطوری که یک تجزیه جرمی موفق ، به دستگاههای تمرکز دهنده مضاعف همراه با عبور طیف جرمی خیلی کم بستگی دارد.
تاریخچه

اولین مطالعات راجع به سیستم لیزر به کار رفته در طیف سنجی جرمی لیزری درسال 1963 توسط "هانینگ" گزارش شد. در این روش از یک لیزر ضربانی یاقوت با قطر پرتو 150µm و عمر ضربه 50µs به همراه یک طیف‌سنج جرمی با تمرکز دهنده مضاعف استفاده شده بود. با مطالعات فراوان روی کاهش عمر ضربات لیزر و کاهش قطر نقاط متمرکز درسال 1966 اولین استفاده حقیقی از طیف سنج جرمی لیزری ، با استفاده از یک لیزر یاقوت با طول ضربانهایی درحدود نانوثانیه و قطر پرتو در حدود 20µm ، گزارش شد.

"هایلن کامپ" و همکارانش در سال 1975 با استفاده از تمرکز دهنده‌های مخصوص ، قطر پرتو لیزر را به 0.5µm رساندند. با این روش حد تشخیص 0.2ppm برای لیتیم روی سطح نازکی ( 1µm - 0.1 ) از رزین اپوکسی بدست آمد. توسعه بعدی در این زمینه توسط "خزورنگ" و همکارانش درسال 1978 صورت گرفت. ایشان با استفاده از یک بازتابشگر یون ( تمرکر دهنده زمانی ) در یک طیف‌سنجی جرمی زمان پرواز ، درجه تفکیک جرم را افزایش دادند.
روشهای طیف سنجی جرمی با لیزر

در چندین سال اخیر ، توجه زیادی در میان دانشمندان شیمی تجزیه‌ای به دو شاخه جدید در طیف‌سنج جرمی لیزری معطوف شده است.
روشهای چند فوتونی

این روش شامل برهمکنش مستقیم بین فوتونهای تابش لیزر با مولکولها ، اتمها و یونها در فاز گاز می‌باشد و خود شامل دو روش می‌باشد:

  • یونیزاسیون: یونیزاسیون چندفوتونی که ممکن است رزونانسی یا غیر رزونانسی باشد و برای تجزیه عنصری در حساسیت‌های بالا بکار می‌رود.
  • تفکیک نوری: این روشها شامل جهش‌های الکترونی هستند و برای اتمها یا مولکولهای خاصی گزینش پذیری دارند.
روشهای دفع سطحی

این روش شامل برهمکنش پرتو لیزر با نمونه در فاز جامد می‌باشد که بدین وسیله یونهای مولکولی و تکه‌های ساختاری مهم از مولکولهای پیچیده ، فرار و بسیار بزرگ تولید می‌شوند. بطور کلی حالتهای مختلفی برای ایجاد یون از جسم جامد بکار برده می‌شوند که از همه مهمتر روش دفع سطحی با لیزر و تبخیر با لیزر می‌باشد.
طیف‌سنجی جرمی رزونانس - یونیزاسیون

برای متخصصان طیف‌سنجی روشهای چند فوتونی امکان مطالعه جهش‌های الکترونی در مولکولهای خنثی را فراهم می‌سازد. یونیزاسیون چند فوتونی حساسیت طیف‌های جذبی جهش‌های غیر مجاز را افزایش می‌دهد. روشهای رزونانسی بازده زیادی از نظر یونیزاسیون داشته و از گزینش پذیری بالایی برخوردارند، درحالیکه یونیزاسیون غیررزونانسی حساسیت و گزینش پذیری کمتری داشته و تکه‌های کمتری ایجاد می‌کند.

با استفاده از روش یونیزاسیون رزونانسی طیف‌سنجی جرمی می‌توان فراوانی ایزوتوپی عناصر را حتی در غلظتهای بسیار کم و یا در حضور مزاحمتهای ایزوباری حذف نمود. تکنیکهای رزونانس - یونیزاسیون بر مبنای برانگیختن نوری الکترونها در اتمهای آزاد (حالت گازی) پایه‌ریزی شده است. در این روش تعداد الکترونهای آزادی که در مرحله برانگیختگی یونی ایجاد می‌شود، می‌تواند افزایش یافته ، توسط یک شمارشگر نسبی گازی تشخیص داده شود.
زمان تجزیه

مهمترین مزیت طیف‌سنجی جرمی با لیزر ، توانایی این روش در تجزیه بسیار سریع و فوق‌العاده مواد آلی و معدنی موجود در مقدار اندکی از نمونه است. در فاصله چند دقیقه بعد از برقراری خلأ ، بعد از انتخاب سطح تجزیه‌ای ، نمونه تجزیه شده ، طیف حاصله به کامپیوتر منتقل می‌گردد.
مزایای روش

مزایای عمده یونیزاسیون و طیف‌سنجی جرمی با لیزر ، قابل تغییر بودن قدرت لیزر برای ایجاد محدوده‌ای از شرایط یونیزاسیون می‌باشد. یکی از خصوصیات جالب این روش ، توانایی آن در ایجاد پیکهای اصلی از بسیاری از ترکیبات غیر فرار با وزن مولکولی بالاست که امکان دیدن آنها با طیف‌سنجهای جرمی معمولی وجود ندارد.
مزاحمتها

دو نوع مزاحمت در این روش وجود دارد.

  • مزاحمتهای طیفی ناشی از تفکیک جرمی محدودی است که اغلب برای تشخیص تکه‌های عنصری و مولکولی ممکن کافی نیست.
  • مزاحمتهای شیمیایی همواره به خاطر اثرات زمینه مقادیر بسیار کم ناخالصیها بوجود می‌آیند.

نوعی دگیر از انواع طیف سنج جرمی
حد تشخیص

روشهای طیف سنجی جرمی لیزری در زمره حساس‌ترین روشها برای تجزیه مقادیر کم به حساب می‌آید. حد تشخیص در حدود 20-10 تا 8-10 می‌باشد، ولی از لحاظ تکرار پذیری این روش دقت خوبی ندارد و این ، به علت تغییرات (در چگالی پرتو) تابیده شده به نمونه می‌باشد.
کاربردها
  • تجزیه کیفی و نیمه کیفی برای تشخیص و حدس درباره زمینه و عناصر با مقادیر بسیار کم نمونه
  • به عنوان وسیله‌ای برای دنبال کردن تغییرات ناشی از عوامل خارجی در ساختار نمونه
  • به عنوان وسیله‌ای برای تشخیص ( اثر انگشت خاص ) ، یک نمونه
  • برای حصول اطلاعات مربوط به اجزای مولکولی موجود
  • به عنوان وسیله‌ای برای ترسیم ساختار شیمیایی نمونه‌های ناهمگن
این روش در تجزیه فلزات به منظور تعیین کربن و اکسیژن و نیتروژن آنها بکار می‌رود. در اندازه گیری ایزوتوپی ، عناصری مانند اورانیوم و پلوتونیوم استفاده می‌شود. برای تعیین ترکیبات آلی با وزن مولکولی بالا در ریز بلورها استفاده می‌شود. دسته زیادی از ترکیبات معدنی شامل غیرفلزات ، فلزات ، اکسیدهای فلزی و نمکها و کمپلکسها و همچنین پلیمرها توسط روش دفع سطحی با لیزر ، طیف‌سنجی جرمی مورد مطالعه قرار گرفته‌اند.
مباحث مرتبط باعنوان
  • آرایشهای لیزری
  • اصول کار لیزر
  • انواع لیزر
  • ایمنی لیزری
  • تمام نگاری
  • خواص نور لیزر
  • سلاحهای لیزری
  • طیف سنجی جرمی با لیزر
  • فاصله یاب لیزری
  • فیزیک لیزر
  • پیدایش لیزر
  • لیزر الکترون آزاد
  • لیزر دی اکسید کربن
  • لیزر گاز دی اکسید کربن
  • لیزر نیم رسانا
  • لیزر هلیوم - نئون
  • لیزر یاقوت
  • لیزرهای حالت جامد
  • لیزرهای دیودی
  • لیزرهای گازی
  • میزر
  • همدوسی
  • ماهیت نور همدوس لیزر
  • کاربرد پزشکی لیزر
  • کاربرد لیزر در اندازه گیری و بازرسی
  • کاربرد لیزر در هولوگرافی
  • کاربرد لیزر در مصارف نظامی
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم

به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم

چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم

زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم

خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم

استاد فاضل نظری
پاسخ با نقل قول
  #3  
قدیمی 10-23-2009
رزیتا آواتار ها
رزیتا رزیتا آنلاین نیست.
مسئول و ناظر ارشد-مدیر بخش خانه داری



 
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677

9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
پیش فرض فاصله یاب لیزری

فاصله یاب لیزری

ریشه لغوی

لیزر در واقع حروف اول عبارت: Light Amplification by Stimulation Emission Of Radiation به معنای تقویت نور به وسیله گسیل القایی تابش می‌باشد.

دید کلی

کاربردهای نظامی لیزر همواره رقم سنگینی را در تولید سیستمهای لیزری به خود اختصاص داده است. یکی از مهمترین کاربردهایی که امروزه در زمینه‌های نظامی وجود دارد فاصله یاب لیزری است. توانایی لیزر در تعیین موقعیت هدف با دقت بالا و سرعت بالا غیر قابل انکار است. لیزرها به علت داشتن واگرایی کم بعد از طی مسافت زیاد به عنوان فاصله یاب مورد استفاده قرار می‌گیرند. اینک وضعیت به گونه‌ای است که هر هواپیمای جنگی که برای ضربه زدن به هدفهای زمینی از روش فرود و خیز استفاده می‌کنند، شانس زیادی به مصون ماندن در مقابل موشکهای زمین به هوای پیچیده پدافند موجود در اکثر نیروهای مسلح دنیا ندارد. در اینجا می‌خواهیم بطور ساده ساز و کار فاصله یاب لیزری و استفاده آن صحبت کنیم.
مسیر تحولی در رشد

تکنولوژی نبرد مدرن تانک از جنگ جهانی دوم به این طرف تا چنان حدی پیشرفت کرده است که اینک رای بر کمال مطلوب برای تانکها اختصاص اولین ضربه به خود و تخریب ماشین زرهی دشمن پیش از امکان واکنش آن است. بیشتر حملات آمریکائیها در ویتنام شمالی با استفاده از سلاحهای هدایت شده با لیزر صورت گرفت و کارایی آن بسیار خوب بود. در آن زمان از بمبهای معمولی دستکاری شده که با کلاهکهای جستجو گر لیزری مجهز شده بود استفاده شد. این توانایی اندازه گیری سریع و دقیق که با جدیت بسیار در دستگاههای مسافت یاب و هدف یاب مورد استفاده قرار می‌گیرند، اکنون بر روی هواپیماهای جنگی نظیر هاریر (Harriers) و جگوار ( Jagvars of R.A.F (Royal Air Craft Force قرار داده می‌شوند.
نقش در زندگی

لیزرهای فاصله یاب معمولا کاربرد نظامی دارند. اینک از لیزرها به عنوان ضد موشک و برد و هدایت اسلحه و ... استفاده می‌شود. هواپیماهای جنگی برای مصون ماندن از پدافندهای مجهز به لیزر باید در ارتفاع کم و با سرعت زیاد حرکت کنند، لذا خلبان ممکن است فقط چند ثانیه برای پیدا کردن هدف ، نشانه گیری و انداختن مهمات خود دقت داشته باشد. با یک لیزر خوب این کار می‌تواند تقریبا بطور آنی با اندازه گیری فاصله زمانی بین روشن کردن لیزر و آشکار ساختن تابش برگشتی پراکنده از هدف انجام گیرد. بنابراین حتی در سرعتهای خیلی زیاد هواپیماهای مدرن ، اگر لیزر به خوبی خنک سازی شود اندازه گیری فاصله می‌تواند 10 تا 20 بار در ثانیه انجام شود.
بنابراین آخرین اطلاعات را به مقدار کافی در اختیار خلبان یا کامپیوتر قرار می‌دهند.




طرز کار

طرز کار فاصله یاب لیزری براساس همان اصولی است که د ر رادارهای معمولی بکار می‌رود. یک تپ لیزری YAG و یا CO2 به هدفی که نشانه روی شده است ارسال می‌شود. پس تپ ارسالی به هدف خورده باز می‌گردد و سپس توسط یک سیستم مناسب گیرنده نوری آشکار می‌شود. فاصله مورد نظر با تعیین مدت زمانی که طول می‌کشد تا تپ ارسالی مسیر رفت و برگشت را طی کند، بدست می‌آید. طرح کلی یک فاصله یاب Nd: YAG متشکل از فرستنده (لیزر) ، گیرنده و دوربین است. پس با ارسال تپ ارسالی به هدف ، نور پراکنده شده از هدف توسط عدسیهای L1 و L2 روی یک آشکار ساز تمرکز یافته و یک سیگنال الکتریکی حاصل می‌شود. اگر لحظه t0 تپ لیزری از سیستم به سمت هدف ارسال شود و سیگنال بازگشتی در لحظه t1 آشکار شود، با توجه به اینکه نور با سرعت C در مدت زمان t1 - t0 فاصله 2x (رفت و بازگشت سیگنال) را پیموده است، فاصله x بدست می‌آید:


(X = (1/2) C(t1 - t0

مشاهده می شود که دقت در تعیین فاصله به دقت در تعیین زمان بستگی دارد. سیستمهای نظامی با شمارش نوسانهای یک بلور کوارتز در مدت زمان t1 - t0 فاصله مورد نظر بصورت عددی روی دستگاه ظاهر می‌شود.
مزایا و اشکالات فاصله یاب های لیزری

مزایا
  1. وزن سبک دستگاه و قیمت و پیچیدگی بسیار کمتر آن نسبت به رادارهای عادی.
  2. قدرت کاری دستگاه در شرایط نه چندان مساعد ، حتی وقتی هدف در بالای سطح آب و یا روی زمین در حال حرکت باشد.
معایب

اشکال فاصله یاب لیزری در آن است که کاربرد دستگاه متضمن دید مستقیم است و باریکه لیزر در شرایط نامساعد به شدت در محیط جذب می‌شود. فاصله یابهایی که با برد تا تقریبا 15Km بکار برده می‌شوند عبارتند از:

  1. فاصله یاب های دستی با برد ماکزیمم 10Km و دقت کمتر از 10m.
  2. فاصله یابهایی که روی تانک سوارند.
  3. فاصله یابهای ضد هوایی.
یک کاربرد عالی از کاربرد تکنولوژی لیزر

یک مثال بسیار عالی از کاربرد تکنولوژی لیزر در فن استفاده از دستگاههای الکتریکی و خودکار در هوانوردی نظامی ال. ار. تی. اس (مسافت یاب و هدف مارکدار یاب لیزری) Laser Ranger Marked Target Seeker است که به آر. ا. اف (نیروی هوایی سلطنتی) توسط شرکت فرانتی (Ferranti Limited) تحویل می‌شود. این سیستم دارای یک خاصیت خیلی مهم و اضافی است و آن اینکه هدفی مانند تانک ، خودرو یا ساختمان می‌تواند توسط سربازی در زمین با یک لیزر نئودیمیوم و یک دوربین دو چشمی مستقر در یک جعبه قابل حمل که نشانگذار زمین نام دارد، مشخص شود.

با نگاه کردن در چشمی ، سرباز یک تصویر بزرگ شده از محل را که روی آن مجموعه‌ای از خطوط متعامد بر هم نصب شده است و مشخص کننده دقیق نقطه‌ای است که لیزر بر روی آن هدف گیری می‌شود، می‌بیند. البته خود خال لیزری نامرئی است. در هواپیما سکویی وجود دارد که نسبت به چرخش پایدار است که بر روی آن تلسکوپ منعکس کننده‌ای نصب شده است که از پنجره‌ای در نوک هواپیما به بیرون سمتگیری شده است. تلسکوپ ، نور لیزری پراکنده شده (باز گشته) از علامتگذار زمینی را از طریق هدف دریافت می‌کند. در تلسکوپ یک آشکار ساز ویژه که به وضوح حساس است قرار دارد و علامات حاصل از آن در نشانه گیری مستقیم تلسکوپ به روی هدف مورد استفاده قرار می‌گیرند.

بدین ترتیب با مرکزی کردن تصویر هدف ، تلسکوپ نشانه گیری هدف را بدون توجه به حرکت هدف یا هواپیما ادامه می‌دهد. حال هم محور با سیستم جستجوگر در هواپیما ، یک بردیاب لیزری مجهز به یک لیزر نئودیمیوم خنک شده با آب - گلیکول وجود دارد که به محض پیدا شدن هدف توسط جستجوگر بطور خودکار روشن می‌شود و بدون وقفه برد و موضع لحظه‌ای هدف را بررسی و به کامپیوتر متصل به سلاح که در خارج هواپیما قرار دارد، اطلاع می‌دهد. یک صفحه علایم در بالای سر خلبان برای نشان دادن موضع هدف قرار دارد و دستگیره‌هایی برای تشکیل اسلحه نصب شده‌اند. بدین ترتیب خلبان می‌تواند برای انجام مأموریت رزمی بر علیه علامت در صفحه علایم پرواز کند و اصلا نیازی به دیدن هدف اصلی در پشت علامت نیست.
چشم انداز آینده

در اینکه در چند سال آینده پیشرفت زیادی در هدف گیری سلاحها و شلیک آنها با استفاده از لیزر انجام خواهد گرفت، تردیدی وجود ندارد. در حال حاضر بر همگان معلوم است که رده‌های توپخانه هدایت شده با لیزر بطور موفقیت آمیزی به نمایش گذارده شده‌اند و دلیلی ندارد که هدایت لیزری در زمانی کوتاه و بطور نیمه در بیشتر انواع ساز و برگ جنگی بکار برده نشود.

__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم

به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم

چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم

زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم

خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم

استاد فاضل نظری
پاسخ با نقل قول
  #4  
قدیمی 10-23-2009
رزیتا آواتار ها
رزیتا رزیتا آنلاین نیست.
مسئول و ناظر ارشد-مدیر بخش خانه داری



 
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677

9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
پیش فرض فیزیک لیزر

فیزیک لیزر





ریشه لغوی

کلمه لیزر (LASER) از حروف ابتدای عبارت "تقویت نور بوسیله گسیل القایی تابش" (Light Amplification By Stimulated Emission of Radiation) در لاتین ساخته شده است که معمولاً در طول موجهای مادون قرمز نزدیک ، مرئی و ماورای بنفش طیف الکترومغناطیس می‌باشد. به گسیلهای لیزر گونه طول موجهای بلندتر ناحیه میکروویو "میزر" (MASER) گفته می‌شود. لیزر اصولاً به منبع نور همدوس و تکرنگ گفته می‌شود.

دید کلی
  • هیچ می‌دانید با لیزر معجزه می‌کنند!
  • فکر می‌کنید لیزر برای چه تولید شده است؟
  • به نظر شما برتری تانکهای مجهز به سیستم مسافت یاب لیزری در چیست؟
بد نیست بدانید که همه شما با لیزر زندگی می‌کنید و رد پایی که لیزر از خود بر جای می‌گذارد به زندگی امروزی معنا می‌دهد. برای همین بشر زندگی خود را در دنیای امروزی مدیون لیزر می‌داند.

تاریخچه لیزر

پیشنهاد استفاده از گسیل القایی از یک سیستم با جمعیت معکوس برای تقویت امواج میکروویو بطور مستقل بوسیله وبر (Weber) ، جوردون (Gordon) ، زیگر (Zeiger) ، تاونز (Townes) ، باسو (Basov) و پروخورو (Prokhorov) داده شد. اولین استفاده عملی از چنین تقویت کننده‌هایی توسط گروه جوردون ، زیگر و تاونز در دانشگاه کالیفرنیا انجام شد. این گروه نام میزر (MASER) را که از ابتدای حروف "Microwave Amplification by Stimulated Emission of Radiation" تشکیل شده بود برای آن برگزیدند.

اولین میزر با استفاده از گذار میکروویو در مولکولهای آمونیاک (NH3) ساخته شد. در سال 1958 اولین بار پیشنهاد فعالیت میزر در فرکانسهای نوری در مقاله‌ای توسط اسکاولو (Schawlow) و تاونز داده شد. در سال 1960 یعنی کمتر از دو سال دیگر ، میلمن (Mailman) موفق به ساخت لیزر پالسی یاقوت شد. این لیزر پیوسته کار (CW) که لیزر گازی هلیوم نئون بود، در سال 1961 توسط علی جوان ایرانی ساخته شد. در سال 1962 نیز پیشنهاد
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم

به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم

چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم

زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم

خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم

استاد فاضل نظری
پاسخ با نقل قول
  #5  
قدیمی 10-23-2009
رزیتا آواتار ها
رزیتا رزیتا آنلاین نیست.
مسئول و ناظر ارشد-مدیر بخش خانه داری



 
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677

9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
پیش فرض پیدایش لیزر

پیدایش لیزر





دیدکلی

لیزر مخفف عبارت light amplification by stimulated emission of radiation می‌باشد و به معنای تقویت نور توسط تشعشع تحریک شده است. لیزر دسته نوری است که می‌تواند بدون اینکه از شدت آن در اثر انتشار کاسته شود، بطور موازی منتشر گردد. سالیان درازی است که در این خصوص بحث و گفتگو می‌شود و حتی هر روز شاهد اختراعات جدید هستیم و پیش بینی می‌شود که در آینده چندین کیلومتر از درختان جنگلی برای ایجاد جاده در یک چشم بر هم زدن قطع شوند یا با بیماری سرطان بطور قطعی مبارزه شود. در روزگاز ما در نتیجه پیشرفت تکنولوژی دامنه استفاده از برخی اختراعات و اکتشافات چنان گسترش یافته که می‌توان گفت انقلابی بزرگ در علم و صنعت پدید آورده است.








سرگذشت لیزر

با اینکه نظریه انیشتن در مورد امکان تابش اجباری از خیلی قبل بیان شده و معلوم بود، لیکن پس از چندین دهه و در سال 1954اولین بار دانشمندان شوروی سابق ه.گ باسوف و آ.ام پروخوف همزمان با دانشمندان آمریکایی ج.تائونس امکان پیدا کردند، تابش اجباری را مشاهده کنند. پانزده سال قبل از آن در سال 1939 فیزیکدان جوان مسکوئی وآ. فابریکانت در تز دکترای خود استدالال کرد که می‌توان محیط‌های فعالی برای ایجاد تابش اجباری بوجود آورد و اشعه تقویت شده تهیه کرد.

شروع جنگ موجب تعطیلی این کار شد. ولی در سال 1951 و.آ.فابریکانت با عده‌ای از دستیاران خود بیانیه‌ای منتشر ساخته و اختراع خود را به نام در اصول صنعتی تقویت تابش الکترومغناطیسی پیشنهاد کرد. این اصول قبلا از نظر تئوری در سال 1917 توسط انیشتین بیان شده بود. این یشنهاد شامل راههای تقویت اشعه فرابنفش ، مرئی ، فروسرخ و امواج رادیویی بود. در این زمان در انستیتوی فیزیک آکادمی علوم شوروی سابق شاگرد و معلم آ.م پروخوف ، و.گباسوف روی تقویت امواج بطور آزمایش کار می‌کردند.








کشف اولین مولد

اولین مولد توسط پروخوف و باسوف در سال 1954 کشف شد که توانستند با آمونیاک اولین مولد امواج فرکانس بالا را بسازند. در این مولد ، مواد فعال را مولکولهای تحریک شده آمونیاک تشکیل می‌دادند که از مولکولهای تحریک نشده بوسیله میدان الکتریکی غیر یکنواخت جدا می‌شدند. دستگاه فوق هنوز مولد کوانتایی اشعه مرئی و یا لیزر نبود. ولی مولد میکرو موجها یعنی میزر بود و به مولد ساخته شده توسط ه.گ باسوف و ا.م پروخوف شبیه بود.

همچنین دانشمندان آمریکایی آ.اشا و الوف و ج.تائونس در سال 1958 محرز ساختند که می‌توان اشعه مرئی را از طریق مولدهای فوق بدست آورد و اولین مولد نیرو با نیروی محرکه داخلی توسط ت.میمن بوسیله یاقوت ساخته شد.








مولفه‌های مختلف لیزر
  1. پمپ انرژی یا چشمه انرژی: که ممکن است این پمپاژ اپتیکی یا شیمیایی و یا حتی یک لیزر دیگر باشد.
  2. ماده پایه و فعال که نامگذاری لیزر بواسطه ماده فعال صورت می‌گیرد.
  3. مشدد کننده اپتیکی: شامل دو آینه بازتابنده کلی و جزئی می‌باشد.
کشف اولین مولد گازی

در پایان سال 1361 علی جوان اولین مولد گازی دائمی را ساخت (علی جوان از انستیتو تکنولوژی ماساچوست ، یکی از پژوهنده‌های نخستین در زمینه توسعه لیزر گازی بود. روز بعد او لیزر گازی را بوسیله فرستادن پیغامی تلفنی امتحان کرد (در آزمایشگاه بل تلفن). چهل سال بعد ارتباطات بوسیله لیزر بصورت خیلی عادی در آمده و از آن در صنایع اینترنتی استفاده‌های بسیار می شود. شاید لیزر یکی از بزرگترین اختراعات تکنولوژی امروزه باشد. دکتر علی جوان هنوز هم بطور زیادی درگیر در اختراعات جدید است و پیش بینی می‌کند که روزی بجای مگاهرتز رادیویی ، جای آنرا گیگاهرتزهای لیزری خواهند گرفت.

ایشان از والدینی اهل آذربایجان (تبریز) در شهر تهران متولد شد و در سال 1949 به آمریکا آمد و چندی بعد دکترای خود را از دانشگاه کلمبیا در شهر نیویورک گرفت. از سال بعد هم در شوروی سابق و هم در آمریکا اولین مولدهای نوری با نیم هادیها مورد استفاده قرار گرفتند. عده‌ای از دانشمندان که در ایجاد اشعه لیزر موفق شدند، در سال 1964 موفق به دریافت جایزه لنین شدند.



دکتر علی جوان در آزمایشگاهش
در انستیتوی ماساچوست


تکامل لیزر

دانشمندان شوروی سابق در پیشبرد اثر جدید ، فعالیتهای بیشتر می‌کردند. پروخوف همچنین تائومنس برای کارهای اولیه که در خصوص الکترونیک کوانتایی انجام دادند، جایزه نوبل گرفتند. الکترونیک کوانتایی با ایجاد اشعه لیزر در محلول بلورهای آبی به موفقیت عظیمی نائل شدند. در سالهای بعد لامپهای مخصوص از این مواد ساخته شد. در پایان سال 1967 در آزمایشگاه ب.ای.اپستانوف برای تولید اشعه لیزر بیش از 50 نوع بلور مورد استفاده واقع شد. این کوششها امکانات بزرگی از لحاظ تولید لیزر با طول موجهای مختلف از فرابنفش گرفته تا مرز فرو سرخ را میسر ساخت.

لیزر در فیزیک و شیمی

اختراع لیزر و تکامل آن وابسته به معلومات پایه‌ای است که در درجه اول از رشته فیزیک و بعد از شیمی گرفته شده‌اند. بنابراین طبیعی است که استفاده از لیزر در فیزیک و شیمی از اولین کاربردهای لیزر باشند. رشته دیگری که در آن لیزر نه تنها امکانات موجود را افزایش داده بلکه مفاهیم کاملا جدیدی را عرضه کرده است طیف نمایی است. اکنون با بعضی از لیزرها می‌توان پهنای خط نوسانی را تا چند ده کیلوهرتز باریک کرد ( هم در ناحیه مرئی و هم در ناحیه فرو سرخ ) و با اینکار اندازه گیریهای مربوط به طیف نمایی با توان تفکیک چند مرتبه بزرگی ( 3 تا 6) بالاتر از روشهای معمولی طیف نمایی امکان پذیر می‌شوند.

لیزر همچنین باعث ابداع رشته جدید طیف نمایی غیر خطی شد که در آن تفکیک طیف نمایی خیلی بالاتر از حدی است که معمولا با اثرهای پهن شدگی دوپلر اعمال می‌شود. این عمل منجر به بررسیهای دقیقتری از خصوصیات ماده شده است. در زمینه شیمی از لیزر هم برای تشخیص و هم برای ایجاد تغییرات شیمیایی برگشت ناپذیر استفاده شده است. ( فوتو شیمی لیزری) بویژه در فنون تشخیص باید از روشهای (پراکندگی تشدیدی رامان) و (پراکندگی پاد استوکس همدوس رامان) (CARS) نام ببریم. بوسیله این روشها می‌توان اطلاعات قابل ملاحظه‌ای درباره خصوصیات مولکولهای چند اتمی بدست آورد (یعنی فرکانس ارتعاشی فعال رامن - ثابتهای چرخشی و ناهماهنگ بودن فرکانس).

روش CARS همچنین برای اندازه گیری غلظت و دمای یک نمونه مولکولی در یک ناحیه محدود از فضا بکار می‌رود. از این توانایی برای بررسی جزئیات فرآیند احتراق شعله و پلاسما (تخلیه الکتریکی) بهره برداری شده است. شاید جالبترین کاربرد شیمیایی (دست کم بالقوه) لیزر در زمینه فوتو شیمی باشد. اما باید در نظر داشته باشیم بخاطر بهای زیاد فوتونهای لیزری بهره برداری تجاری از فوتوشیمی لیزری تنها هنگامی موجه است که ارزش محصول نهایی خیلی زیاد باشد. یکی از این موارد جداسازی ایزوتوپها است.

__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم

به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم

چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم

زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم

خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم

استاد فاضل نظری
پاسخ با نقل قول
  #6  
قدیمی 10-23-2009
رزیتا آواتار ها
رزیتا رزیتا آنلاین نیست.
مسئول و ناظر ارشد-مدیر بخش خانه داری



 
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677

9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
پیش فرض لیزر الکترون آزاد

لیزر الکترون آزاد



مقدمه





در لیزرهای رزینه‌ای الکترونها مقید به یک اتم و یا یک مولکول هستند و یا در طول زنجیره‌ای از اتمها که مولکول دو قطبی را تشکیل می‌دهند، آزادی حرکت دارند. نیز در لیزرهای نیم رسانا الکترونها می‌تواند که در تمام حجم بلور حرکت کنند. ولی در لیزر الکترون آزاد ، که یکی از جدیدترین و جالبترین انواع لیزرهاست، الکترونها بیشتر از موارد فوق الذکر آزادی حرکت دارند.

در لیزر الکترون آزاد الکترونها آزادانه در یک میدان مغناطیسی متناوب حرکت می‌کنند و در اثر برهمکنش میدان الکترومغناطیسی با الکترونهایی که در این ساختار تناوبی در حرکتند، فرآیند گسیل القایی رخ می‌دهد. از نظر تاریخی ، لیزر الکترون آزاد اولین بار در سال 1951 بوسیله Mets پیشنهاد شد. این لیزر قادر به کار در ناحیه طیفی مرئی و ماوراء بنفش هستند، ولی تا کنون این لیزرها تنها در طول موج λ = 3/4µm عمل کرده است.
سینماتیک اندرکنش الکترون آزاد- فوتون

لیزرهای الکترون آزاد ، علت تشعشع انرژی الکترومغناطیسی ، شتاب الکترونها در میدان متناوب است. نمونه مشابه برای چنین تشعشعی ، تشعشع سینکروترون الکترونهایی است که در یک میدان مغناطیسی حرکت دایره‌ای انجام می‌دهند ولی این تشعشع طیف وسیعی را می‌پوشاند، لذا برای نوسان لیزری مناسب نیست. در لیزر الکترون آزاد ، الکترونها مجبورند در جهت عرضی (x یا y) حرکت موجی انجام دهند، در حالیکه با سرعتهای نسبیتی در جهت محور اصلی (z) حرکت می‌کنند.







مقدار بیشتری از انرژی میدان تشعشعی حاصله ، بر خلاف تشعشع سینکروترون دارای باند باریکه‌ای از فرکانس است و این برای نوسان لیزری مناسب است. این فرکانسها در واقع فرکانسهایی هستند که الکترونها با یک طول موج اپتیکی ، عقب نشینی می‌کند. تشعشع منتشره در هر نقطه در طول مسیر با تشعشع منتشره در زمانهای قبلی در یک ردیف قرار گرفته و بدین ترتیب یک جمع شوندگی میدان ایجاد می‌شود (چنین سرعت الکترون نسبیتی است). یک نقطه نظر دیگر ، مبادله توان ( Ex(r,t)Vx(r,t بین الکترون متحرک و موج الکترومغناطیسی متحرک با یک میدان (E(r,t می‌باشد. شرط همزمانی استنتاج شده در بالا ، تضمین می‌کند که علامت ExVx نباید تغییر کند، چون هر تغییر علامتی در Vx اتفاق بیفتد، در همان زمان Ex تغییر علامت می‌دید.

توان ExVx که از باریکه الکترون به موج الکترومغناطیسی جاری می‌شود، پیوسته است (این توان حادی شده ممکن است منفی باشد). فرکانسهای گذار فرکانسهایی هستند که طی آن سرعت الکترون تغییر جهت می‌دهد. الکترون آزاد ، انرژی E1 از میدان الکتریکی یک فوتون با انرژی Eph جذب کرده و یا به آن یک فوتون می‌دهد و با انرژی E2 خاتمه می‌یابد.

چون الکترونها حرکت نسبیتی دارند لذا انرژی آنها نیز باید از روابط نسبیتی محاسبه شود. اما مشاهده می‌کنیم که تغییر در انرژی Ee∆ یک الکترون ، ایجاد یک گذار از مختوم P1 به P2 می‌کند که کوچکتر از انرژی (P1 - P2) فوتون با مختوم (P1 - P2) می‌باشد. این نتیجه در سه بعد نیز صادق است. یکی از راه حلهای این مسئله میانجیگری در اندرکنش بین الکترون و باریکه نور (فوتونها) بوسیله انتقال پریودیک فضایی است که با مضاربی از 2π/L جذب می‌کند (L پریود است)، اختلال می‌‌تواند بر فوتون ، الکترون و یا هر دو اثر کند.

برای مشاهده نحوه عمل ، فرض می‌کنیم در تیوبهای موج رونده میکروویو ، جائیکه میدان الکترومغناطیسی در یک ساختار پریودیک منتشر می‌شود، به میدان یک حرکت پریودیک اضافی وارد می‌شود. در مورد یک لیزر الکترون آزاد ، این حرکت الکترون است که بطور پریودیکی با بکار بردن یک میدان مغناطیسی بطور فضایی پریودیکی مدوله می‌شود. البته می‌توان میدان الکترومغناطیسی را بطور فضایی مدوله کرد، این کار با بکار بردن یک موجی که بطور فضایی پریودیکی است، عملی می‌باشد.

هرگاه در تیوبهای موج رونده و شتاب دهنده‌های خطی ذرات باردار ، به نقطه نظر کلاسیکی برگردیم: یک الکترون را در نظر می‌گیریم که با سرعت V در حرکت است و با یک میدان الکترومغناطیسی رونده که میدانهای مغناطیسی و الکتریکی آن به ترتیب بصورت (E(r,t)B(r,t است، اندرکنش می‌کند.
شرط همزمانی (The synchrcnism crndition)

برای اینکه یک تبادل انرژی بین الکترون (با انرژی γmc2) و یک میدان E صورت می‌گیرد، لازم است که سرعت الکترون (v) در امتداد E ، مؤلفه غیر صفر داشته باشد. (γ ضریب تبدیل جرم نسبیتی است) در مورد موج الکترومغناطیسی تخت که در جهت z منتشر می‌شود Ez = 0 بوده و Ex ≠ 0 است. برای اینکه بایستی بررسی الکترون یک مؤلفه عرضی Vx داشته باشیم، چون Vz < c است، الکترون نسبت به موج عقب می‌افتد و بایستی تغییر علامت دهد (جهت سرعت تغییر می‌کند)، لذا تبادل خالص انرژی بین الکترون و باریکه متوسط گیری می‌شود.







یک راه حل آشکار این مسئله ودار کردن الکترون به تغییر سرعتش می‌باشد. بطوری که در یک جهت با میدان عرضی حرکت می‌کند. این کار با بکار بردن یک میدان مغناطیسی عرضی پریودیکی فضایی (با پریود 0λ) در حضور یک موج الکترومغناطیسی تخت با طول موج λ بیان می‌شود. بردار سرعت الکترون در z = 0 با میدان روبرو شده و دارای یک سرعت عرضی موازی جهت میدان (Vx||Ex) می‌باشد. بطوری که VxEx>0 است. یک الکترون مشابه در دو نقطه اضافی دیگر نشان داده شده‌اند. بخشی از یک میدان الکتریکی که در ابتدا در نقطه z = 0 با الکترون روبرو شده ، در نقطه Vx 0 است، ولی میدان الکترومغناطیسی سریعتر و جلوتر از الکترون حرکت می‌کند بطوری که Ex < 0 و ExVx > 0 است.

در نقطه z = λ0 ، Vx > 0 است و Ex > 0 است لذا ExVx>0 می‌باشد. بنابراین در هر نقطه ExVx> 0 است و الکترون بطور پیوسته قرمز شده و به میدان اپتیکی انرژی می‌دهد. شرط تشدید P1 - P2 = ±t.k می‌باشد.
نشر خود به خودی و بهره در FEL

وقتی که الکترون در میدان مغناطیسی wigglel حرکت شتابدار انجام می‌دهد (و این شتاب پریودیک و عرضی می‌باشد) و از آن یک تشعشع خودبخودی بوجود می‌آید، بطوری که طیف حاصل از این تشعشع از روابط مشابه توری پیروی می‌کند. (پریودهای میدان مغناطیسی برای الکترون به مثابه توری می‌باشد). الکترون شتابدار موج الکترومغناطیسی تشعشع می‌کند و این تشعشع در یک ساختار پریودیک صورت می‌گیرد. بهره به عنوان اختلاف بین آهنگ نشر و جذب تحریکی بوسیله الکترونهای تشعشعی می‌باشد.
مزایا وکاربردهای FEL
  • یکی از مزیتهای FEL نسبت به لیزرهای اتمی این است که در FEL با افزایش طول اندرکنش L ، بهره الزاما افزایش پیدا نمی‌کند و ممکن است بهره از بین رفته و حتی منفی شود و خود L افزایش می‌یابد، فرکانس برای ماکزیمم بهره به مقدار تشدید خود نزدیک می‌شود.
  • در نوسانگرهای FEL تشعشع از افت و خیز چگالی باریکه الکترونی و یا از نشر خودبخودی آغاز می‌شود و هنگامی که توان تبدیلی از باریکه الکترونی بتوان تشعشعی از اتلافات تشعشع در مشدد زیاد باشد عمل لیزر صورت می‌گیرد. مزیت اصلی FEL به لیزرهای کوانتومی قابلیت تنظیم تشعشع آن می‌باشد. در لیزرهای کوانتومی طول موج لیزر بوسیله انرژی گذارهای بین ترازهای کوانتومی اتمها یا مولکولها در ماده فعال مشخص می‌شود و علی‌رغم تنوع و تعداد مواد فعال لیزری تعداد ترازهای کوانتومی محدود است (محدود به معنی متناهی) ولی در FEL ها طول موج لیزر بوسیله پارامترهای باریکه الکترونی و ساختار الکترودینامیکی آنها مشخص می‌شود (دیوارهای موجی ، آینه‌های مشدد و ...) نیز با مشخصه‌های میدانهای الکتریکی و مغناطیسی در ناحیه اندرکنش.
  • تشعشع FEL می‌تواند بر یک نقطه که سایز آن با پدیده‌های پراش مشخص می‌شود، متمرکز گردد.
  • تقویت نور در FEL ها در خلأ صورت می‌گیرد، لذا اثرات ماده فعال روی نور وجود ندارد و پراش نیز کم است. لذا این لیزر برای طی مسیر طولانی و توانهایی بالا مناسب است، ولی در لیزرهای معمولی بخاطر پراکندگی ماده فعال توان خروجی کم است، ولی مشکل عمده FEL ها تکنیک شتاب دهنده الکترونی است.
  • بهره FEL ها بالای 100% است، ولی محدودیتهای موجود (نه از نظر فیزیکی) باعث شده که رکورد بهره از 34% تجاوز نکند.
از این لیزرها در علم و صنعت ، مانند فعل و انفعالات مواد میکرو لیتوگرافی ، جداسازی ایزوتوپها ، کاربردهای شیمیایی ، گرمایش پلاسما و ... استفاده می‌شود.

__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم

به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم

چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم

زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم

خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم

استاد فاضل نظری
پاسخ با نقل قول
  #7  
قدیمی 10-23-2009
رزیتا آواتار ها
رزیتا رزیتا آنلاین نیست.
مسئول و ناظر ارشد-مدیر بخش خانه داری



 
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677

9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
پیش فرض لیزر دی اکسید کربن

لیزر دی اکسید کربن

مقدمه

لیزر وسیله‌ای برای تولیدی پرتوی تکفام و همدوس در نواحی نور فرابنفش ، مرئی و یا فروسرخ از طیف امواج الکترومغناطیسی است. کلمه لیزر در حقیقت از حروف اول کلمه‌های عبارت انگلیسی زیر گرفته شده است:


Light Amplification by Stimulated Emission of Radiation





این عبارت به معنی "تقویت نور با روش گسیل الفایی تابش" گرفته شده است، که همه آنها اصطلاحهایی فیزیکی هستند. از آنجا که باریکه نور لیزر همدوس است (یعنی امواج آن همفاز هستند و به عبارت دیگر مانند سربازانی هستند که باهم پا می‌کوبند، با واگرایی بسیار کم پیش می‌رود و مانند نور معمولی نبوده و کمتر پخش می‌شود) و در نتیجه چگالی و یا تراکم آن در فضا ثابت می‌باشد. پرتو لیزر همچنین مزیت تمرکز زیاد انرژی در واحد سطح را دارد.
مبانی نظری

اتمها در حالتهای گسسته‌ای از انرژی وجود دارند. وقتی یک اتم که در حالت پایه (پایین‌ترین حالت انرژی) است انرژی جذب کند، به حالت انرژی برانگیخته‌ای صعود می‌کند. به دنبال آن در بازگشت به حالت پایه چه بطور مستقیم و چه از طریق حالتهای انرژی میانی ، فوتونهای تابشی با بسامد و طول موجی گسیل می‌دارد که بستگی به اختلاف انرژی بین حالتهای انرژی "شبه پایدار" می‌باشند.گسیل فوتون از اتمها در حالتهای انرژی شبه پایدار گاه به تأخیر می‌افتد تا در نهایت به گسیل تابش فلورسنانسی یا فسفرسانسی منجر شود.

اتمهایی که برای عملکرد لیزر مناسب می‌باشند، باید حداقل دارای چنین حالت شبه پایداری باشند. وقتی یک فوتون که از حالت شبه پایدار اتمی گسیل شده ، از نزدیکی یک اتم دیگر که در همان حالت است عبور کند می‌تواند آن اتم را ترغیب کند تا یک فوتون تابشی گسیل دارد که دارای انرژی (و طول موج) ، جهت ، قطبش و فاز یکسان مانند خودش باشد. هر یک از چنین فوتونهای ترغیب شده‌ای خود نیز می‌توانند باز هم فوتون مشابه دیگری را ترغیب کنند. این فرآیند که اساس عملکرد لیزر است یک فرآیند جمع شونده و پیوسته است و می‌توان با ایجاد شرایط مناسب آن را تقویت کرد.

تهیه تعداد لازم از اتمهایی که در حالت انرژی شبه پایدار صحیح باشند، ضرورت اساسی برای عملکرد لیزر است. عملکرد لیزر بستگی به ایجاد یک "وارونی تعداد" دارد که در آن بیشتر اتمها در حالت شبه پایدار می‌باشند. انرژی را باید به این تعداد "پمپ کرد" تا وارونی لازم را ایجاد کنند. بنابراین حالت شبه پایدار مستقیما و یا با تنزل از یک حالت بالاتر بوجود می‌آید.




لیزرهای دی اکسیدکربن

لیزر دی اکسیدکربن (CO2) نمونه‌ای از یک لیزر گاز مولکولی پر قدرت است. باریکه خروجی وقتی کانونی شود می‌تواند صفحات الماس و فولاد ضخیم را در عرض چند ثانیه برش دهد. نمودار تراز انرژی یک گاز مولکولی بطور قابل توجهی پیچیده‌تر از آن برای یک اتم است. حالتهای انرژی مه قبلا توضیح داده شده بصورت ترازها منجر به گسیل نور مرئی می‌شوند. هر تراز الکترونی در یک مولکول گاز بطور کلی دارای زیر ترازهایی مربوط به ارتعاشات مجاز ملکولی می‌باشد و هر یک از این ترازهای ارتعاشی نیز زیر ترازهایی بر اساس دوران مجاز مولکولی دارند.

عملکرد لیزر از طریق گذارهای بین ترازهای ارتعاشی - دورانی مختلف امکان پذیر می‌شود و تابش خروجی به صورت فرو سرخ (فوتونهای کم انرژی) می‌باشد. لیزر CO2 با استفاده از این نوع گذار یک باریکه خروجی مثلا به طول موج 10.6 میکرومتر در عملکرد موج پیوسته (CW) می‌دهد. طراحی لیزر ، CO2 شبیه He - Ne است، با این تفاوت که مخلوط گاز (9% دی اکسید کربن ، 15% نیتروژن ، 76% هلیوم) پیوسته و بطور یکنواخت از داخل لوله عبور می‌کند. پمپ کردن این لیزر مانند لیزر هلیوم- نئون با برانگیزش dc انجام می‌گیرد. لوله را باید خنک کرد، این کار معمولا با جریان آب بطور یکنواخت از میان یک پوشش به دور لوله صورت می گیرد.




لیزر زایی در CO2

عمل لیزر کنندگی در لیزر CO2 بواسطه انتقال انرژی از اتمهای نیتروژن برانگیخته به ترازهای انرژی مجاور مولکولهای CO2 صورت می‌گیرد. بهره توان بالای لیزر CO2 (حدود 15%) به دلیل پایین قرار داشتن حالتهای انرژی ارتعاشی و دورانی دی اکسیدکربن که انرژی کمی برای برانگیختگی لازم دارند. با قرار دادن یک Q - سوئیچ می‌توان لیزر CO2 را از عملکرد موج پیوته به عملکرد پالسی (ضربه‌ای) تبدیل کرد. با استفاده از این شیوه یک لیزر 100 واتی CW می‌تواند پالسهای 100 کیلو واتی در عرض 150 نانو ثانیه و با 400 پالس در ثانیه ایجاد کند.

لیزر CO2 نمونه‌ای از یک نوع طیفی غنی از منبع انرژی است، زیرا تعداد بسیار زیادی از انتقالهای لیزری امکان پذیر می‌باشند. لیزرهای با چنین مشخصه‌ای را لیزرهای قابل تنظیم می‌گویند. لیزرهای CO2 جدید بعضا روی بیش از 85 طول موج مختلف قابل تنظیم هستند. تنظیم ممکن است با شیوه خوش ساختی از طیف نگار "لیترو" که در آن از یک منشور و یا از یک توری پراش برای پراکندگی استفاده می‌شود، انجام گیرد. در یک انتهای لیزر ، منشور تمام نقره اندودی که قابل چرخش است قرار دارد و نور را طوری پراکنده (پاشنده) می‌کند که فقط خط طیف با محور لیزر هم خط می‌شود و به دنبال آن تقویت می‌گردد و امواج ایستاده بجای می‌گذارد.

__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم

به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم

چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم

زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم

خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم

استاد فاضل نظری
پاسخ با نقل قول
  #8  
قدیمی 10-23-2009
رزیتا آواتار ها
رزیتا رزیتا آنلاین نیست.
مسئول و ناظر ارشد-مدیر بخش خانه داری



 
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677

9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
پیش فرض کاربرد پزشکی لیزر

کاربرد پزشکی لیزر


دید کلی

امروزه بطور نسبی همه لیزر و موارد کاربرد آن را می‌دانند. در تمام دنیا استفاده از لیزر و مشتقات آن بطور شگفت انگیزی افزایش داشته است. هر کس خالی داشته باشد که آن را مزاحم بداند به سراغ لیزر می‌رود. بنابراین بررسی علمی این موضوع مفید و لازم به نظر می‌آید. البته نور و طیف آن می‌تواند اثرات مفید و مضر برای بدن و پوست ایجاد کند. اثرات نور بنفش نقش تعیین کننده و مفیدی بر تغذیه و متابولیسم سلولی ایفا می‌کند. اینگونه اثرات سلامت بخش و مفید نور از زمانهای کهن نیز برای انسان تا حدود زیادی روشن بوده است.







بر اساس شواهد و مدارک موجود یونانیها و رومیها هر دو از اثرات مفید و درمانی نور بطور تجربی اطلاع داشته و از آن در درمانهای مختلف بهره می‌جستند. در اوایل سال 1903 دانشمندان اثرات درمانی نور را در شکلی علمی مطرح نمودند و در همین سالها یک فیزیکدان بنام Nife finsen Ryberg بخاطر کشفها و تحقیقاتش روی قابلیتهای درمانی اشعه‌های ناشی از طیفهای مختلف نور موفق به دریافت جایزه نوبل گردید. او دستگاهی را اختراع کرد که طول موجهای مختلف نور خورشید را مجزا نموده و آنها را در مسیرهای معین هدایت می‌نمود.
کاشف واقعی لیزر کیست؟

انیشتین نخستین دانشمندی بود که مقوله لیزر را در قالبی علمی مطرح کرد و در سالهای بعد از آن آمریکاییها و روسها در طول جنگ سرد تحقیقات و پژوهشهای متعددی در مورد چگونگی بکارگیری لیزر در صنایع جنگی انجام دادند. نخستین لیزر طبی به نام Robust که در قالب یک ماشین ثابت با حجمی سنگین و در اندازه‌ای بزرگ طراحی شده بود در درمانهای جراحی مورد استفاده قرار گرفت.







پس از آن جهان طب شاهد تکامل سریع و غیر منتظره در تولید انواع لیزر طبی و ارائه شدن نسلهای مختلف لیزر به جامعه پزشکی بوده به رغم اشکال متنوع و چند کاره بودن دستگاه لیزر در حوزه‌های مختلف پزشکی یک اصل اساسی از ابتدا تا کنون هرگز تغییر نکرده و آن بکار گیری بهینه از انرژی حاصل از لیزر در حوزه‌های مختلف علمی ، پزشکی ، جراحی و زیباسازی پوست می‌باشد.
اثرات لیزر روی بدن
  • تحریک سلولی: لیزر باعث تشدید رشد و ترمیم مجدد سلول در پوست ، اتصالات ، مفاصل ، بافتها و ... می‌گردد.
  • افزایش فعالیت بافتها: تولید سلولهای زایا افزایش تولید آنزیمها و پروستا گلاندینها و ... را باعث می‌شود.
  • ترمیم و تشدید فعالیت DNA : لیزر در RNA بافت کلاژن تغییراتی را ایجاد می‌نماید.
آثار ضد التهابی لیزر
  • کاهش بافت فیبروز: درمان زخمها توسط لیزر امکان پذیر می‌باشد.
  • آثار استریلیزاسیون و میکروب کشی
  • اثرات ضد ویروسی
  • تحریک فعالیتهای بافت عصبی
  • افزایش قدرت دفاعی بدن: تولید اینترفرون (مولکول واسطه در سیستم ایمنی) را باعث می‌شود.
  • تقویت نمودن رشد مجدد موها
  • کاهش دادن رشد موها و محو موهای ناخواسته
  • ایجاد واسکولاریزاسیون: شکل گیری عروق جدید خونی که باعث خونگیری بهتر بافتها می‌گردد را باعث شده که این خاصیت لیزر عامل اساسی در جوان شدن مجدد پوست می‌باشد.
  • افزایش تراکم بافتی با لیزر



استفاده از لیزر در درمان بیماریها
  • کاربرد در درماتولوزی: درمان سوختگیها و زخمهای مقاوم به درمان آکنه ، اگزما ، پسوریاسیس ، ضایعات و اقدامات پیشگیرانه مثل جلوگیری از پیر شدن پوست توسط لیزر امکان پذیر شده است.
  • بیماریهای عضلانی - اسکلتی و ارتوپدی: در درمان کشیدگیهای تاندونی آرتریت روماتوئید ، رفع اختلالات موجود در اتصالات عضلانی کمر دردها و کشیدگیها بکار می‌رود.
  • بیماریهای دهان و دندان: درمان پوسیدگیهای دندانی پریودنتیتها بیماریهای مخاط دهان اختلالات جویدن و ... توسط لیزر صورت می‌پذیرد.
  • در حوزه عصبی:درمان سردردها و میگرن توسط لیزر امکان پذیر می‌باشد.
  • بیماریهای عروقی:درمان واریسهای وریدی ضایعات عروقی حاصله از بدو تولد و ... .
موارد منع استفاده از لیزر در پزشکی
  • تقریبا هیچ موردی در منع استفاده از لیزر وجود نداشته و فقط به هنگام حاملگی به علت عدم وجود اطلاعات کافی بهتر است این وسیله با احتیاط استفاده شود.
  • در مورد انواع مختلف پوست و یا داروهایی که فرد مورد استفاده قرار می‌دهد باید لیزر را با احتیاط بیشتری بکار برد. برای مثال استفاده از هپارین و وارفارین (داروهایی که معمولا برای رقیق کردن خون بکار می‌روند) منعی در استفاده از لیزر ندارند.
  • پس از کشف پنی سیلین کشف لیزر و شناخت قابلیتهای آن در طب بزرگترین انقلاب می‌تواند باشد.
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم

به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم

چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم

زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم

خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم

استاد فاضل نظری
پاسخ با نقل قول
  #9  
قدیمی 10-23-2009
رزیتا آواتار ها
رزیتا رزیتا آنلاین نیست.
مسئول و ناظر ارشد-مدیر بخش خانه داری



 
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677

9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
پیش فرض کاربرد لیزر در اندازه گیری و بازرسی

کاربرد لیزر در اندازه گیری و بازرسی

خصوصیات جهت‌مندی، درخشایی، و تکفامی لیزر باعث کاربردهای مفید زیادی برای اندازه گیری و بازرسی در رشته‌مهندسی سازه و فرایندهای صنعتی کنترل ابزار ماشینی شده است. در این بخش تعیین فاصله بین دو نقطه و بررسی آلودگی را نیز مد نظر قرار می دهیم.

هم محور کردن


:یکی از معمولترین استفاده های صنعتی لیزر هم محور کردن است. برای اینکه یک خط مرجع مستقیم برای هم محور کردن ماشین آلات در ساخت هواپیما و نیز در مهندسی سازه برای ساخت بناها پلها و یا تونلها داشته باشیم استفاده از جهتمندی لیزر سودمند است. در این زمینه لیزر به خوبی جای وسایل نوری مانند کلیماتور و تلسکوپ را گرفته است. معمولا از یک لیزر هلیم - نئون با توان کم استفاده می شود و هم محور کردن عموما به کمک آشکارسازهای حالت جامد به شکل ربع دایره ای انجام می شود. محل برخورد باریکه لیزر روی گیرنده با مقدار جریان نوری روی هر ربع دایره معین می شود. در نتیجه هم محور شدن بستگی به یک اندازه گیری الکتریکی دارد و در نتیجه نیازی به قضاوت بصری آزمایشگر نیست. در عمل دقت ردیف شدن از حدود 5µm تا حدود 25µm به دست آمده است.

مسافت سنجی


:از لیزر برای اندازه گیری مسافت هم استفاده شده است. روش استفاده از لیزر بستگی به بزرگی طول مورد نظر دارد.

:برای مسافتهای کوتاه تا 50 متر روشهای تداخل سنجی به کار گرفته می شوند که در آن ها از یک لیزر هلیم - نئون پایدار شده فرکانسی به عنوان منبع نور استفاده می شود. برای مسافتهای متوسط تا حدود 1 کیلومتر روشهای تله متری شامل مدوله سازی دامنه به کار گرفته می شود. برای مسافت های طولانی تر می توان زمان در راه بودن تپ نوری را که از لیزر گسیل شده است و از جسمی بازتابیده می شود اندازه گیری کرد.

در اندازه گیری تداخل سنجی مسافت از تداخل سنج مایکلسون استفاده می شود. باریکه لیزر به وسیله یک تقسیم کننده نور به یک باریکه اندازه گیری و یک باریکه مرجع تقسیم می شود باریکه مرجع با یک آینه ثابت بازتابیده می شود در حالی که باریکه اندازه گیری از آینه ای که به جسم مورد اندازه گیری متصل شده است بازتاب پیدا می کند. سپس دو باریکه بازتابیده مجددا با یکدیگر ترکیب می شوند به طوری که با هم تداخل می کنند و دامنه ترکیبی آن ها با یک آشکار ساز اندازه گیری می شود. هنگامی که محل جسم در جهت باریکه به اندازه نصف طول موج لیزر تغییر کند سیگنال تداخل از یک ماکزیموم به یک مینیموم می رسد و سپس دوباره ماکزیموم می شود. بنابراین یک سیستم الکترونیکی شمارش فریزها می تواند اطلاعات مربوط به جابجایی جسم را به دست دهد. این روش اندازه گیری معمولا در کارگاههای ماشین تراش دقیق مورد استفاده قرار می گیرد و امکان اندازه گیری طول با دقت یک در میلیون را می دهد. باید یادآوری کرد که در این روش فقط می توان فاصله را نسبت به یک مبدا اندازه گیری کرد. برتری این روش در سرعت دقت و انطباق با سیستم های کنترل خودکار است.

:برای فاصله های بزرگتر از روش تله متری مدوله سازی دامنه استفاده می شود و فاصله روی اختلاف فاز بین دو باریکه لیزر مدوله می شود و فاصله از روی اختلاف فار بین دو باریکه گسیل شده و بازتابیده معین می شود. باز هم دقت یک در میلیون است. از این روش در مساحی زمین و نقشه کشی استفاده می شود. برای فواصل طولانی تر از 1 کیلومتر فاصله با اندازه گیری زمان پرواز یک تپ کوتاه لیزری گسیل شده از لیزر یاقوت و یا لیزر CO2 انجام می گیرد. این کاربردها اغلب اهمیت نظامی دارند و در بخشی جداگانه بحث خواهد شد کاربردهای غیر نظامی مانند اندازه گیری فاصله بین ماه و زمین با دقتی حدود 20 سانتی متر و تعیین برد ماهواره ها هم قابل ذکر است.


سرعت سنجی


:درجه بالای تکفامی لیزر امکان استفاده از آن را برای اندازه گیری سرعت مایعات و جامدات به روش سرعت سنجی دوپلری فراهم می سازد. در مورد مایعات می توان باریکه لیزر را به مایع تابانده و سپس نور پراکنده شده از آن را بررسی کرد. چون مایع روان است فرکانس نور پراکنده شده به خاطر اثر دوپلر کمی با فرکانس نور فرودی تفاوت دارد. این تغییر فرکانس متناسب با سرعت مایع است. بنابراین با مشاهده سیگنال زنش بین دو پرتو نور پراکنده شده و نور فرودی در یک آشکار ساز می توان سرعت مایع را اندازه گیری بدون تماس انجام می شود. و نیز به خاطر تکفامی بالای نور لیزر برای برد وسیعی از سرعتها خیلی دقیق است.

:یکی از سرعت سنجهای خاص لیزر اندازه گیری سرعت زاویه ای است. وسیله ای که برای این منظور طراحی شده است ژیروسکوپ لیزرینامیده می شود و شامل لیزری است که کاواک آن به شکل حلقه ای است که از سه آینه به جای دو آینه معمول استفاده می شود. این لیزر می تواند نوسان مربوط به انتشار نور را هم در جهت عقربه ساعت و هم در خلاف آن به دور حلقه تامین کند. فرکانسهای تشدیدی مربوط به هر دو جهت انتشار را می توان با استفاده از این شرط که طول تشدید کننده ( حلقه ای ) برابر مضرب صحیحی از طول موج باشد به دست آورد. اگر حلقه در حال چرخش باشد در مدت زمانی که لازم است نور یک دور کامل بزند زاویه آینه های تشدید کننده به اندازه یک مقدار خیلی کوچک ولی محدود حرکت خواهد کرد. طول موثر برای باریکه ای در همان جهت چرخش تشدید کننده می چرخد کمی بیشتر از باریکه ای است که در جهت عکس می چرخد. در نتیجه فرکانس های دو باریکه ای که در خلاف جهت یکدیگر می چرخند کمی تفاوت دارد و اختلاف این فرکانسهای متناسب با سرعت زاویه ای تشدید کننده است . با ایجاد تپش بین دو باریکه می توان سرعت زاویه ای را اندازه گیری کرد. ژیروسکوپ لیزری امکان اندازه گیری با دقتی را فراهم می کند که قابل مقایسه با دقت پیچیده ترین و گرانترین ژیروسکوپ های معمولی است.


دیسکهای تصویری و صوتی


:کاربرد مصرفی دیگر و یا به عبارت بهتر کاربرد مصرفی واقعی عبارت از دیسک تصویری و دیسک صوتی است. یک دیسک ویدئو حامل یک برنامه ویدئویی ضبط شده است که می توان آن را بر روی دستگاه تلویزیون معمولی نمایش داد. سازندگان دیسک ویدئویی اطلاعات را با استفاده از یک سابنده روی آن ضبط می کنند که این اطلاعات به وسیله لیزر خوانده می شود. یک روش معمول ضبط شامل برشهای شیاری با طول ها و فاصله های مختلف است عمق این شیارها 4/1 طول موج لیزری است که از آن در فرایند خواندن استفاده می شود. در موقع خواندن باریکه لیزر طوری کانونی می شود که فقط بر روی یک شیار بیفتد. هنگامی که شیار در مسیر لکه باریکه لیزر واقغ شود بازتاب به خاطر تداخل ویرانگر بین نور بازتابیده از دیوارهای شیار و به آن کاهش پیدا می کند. به عکس نبودن شیار باعث یک بازتاب قوی می شود. بدین طریق می توان اطلاعات تلویزیونی را به صورت رقمی ضبط کرد.


نوشتن و خواندن اطلاعات


:کاربرد دیگر لیزرها نوشتن و خواندن اطلاعات در حافظه نوری در کامپیوترهاست لطف ای حافظه نوری هم در توان دسترسی به چگالی اطلاعات حدود مرتبه طول موج است. تکنیک ضبط عبارت است از ایجاد سوراخ های کوچکی در یک ماده مات یا نوعی تغییر خصوصیت عبور و بازتاب ماده زیر لایه که با استفاده از لیزرهای با توان کافی حاصل می شود. و حتی می تواند فیلم عکاسی باشد. اما هیچ یک از این زیر لایه ها را نمی توان پاک کرد. حلقه های قابل پاک کردن بر اساس گرما مغناطیسی فروالکتریک و فوتوکرومیک ساخته شده اند. همچنین حافظه های نوری با استفاده از تکنیک تمام نگاری نیز طراحی شده اند. نتیجتا اگر چه از لحاظ فنی امکان ساخت حافظه های نوری به وجود آمده است ولی ارزش اقتصادی آن ها هنوز جای بحث دارد.

گرافیک لیزری


:آخرین کاربردی که در این بخش اشاره می کنیم گرافیک لیزری است. در این تکنیک ابتدا باریکه لیزر بوسیله یک سیستم مناسب روبشگر بر روی یک صفحه حساس به نور کانونی می شود و در حالی که شدت لیزر به طور همزمان با روبش از نظر دامنه مدوله می شود به طوری که بتوان آن را بوسیله کامپیوتر تولید کرد.( مانند سیستم های چاپ کامپیوتری بدون تماس ) و یا آنها را به صورت سیگنال الکتریکی از یک ایستگاه دور دریافت کرد( مانند پست تصویری). در مورد اخیر می توان سیگنال را به وسیله یک یک سیستم خواننده مناسب با کمک لیزر تولید کرد. وسیله خواندن در ایستگاه دور شامل لیزر با توان کم است که باریکه کانونی شده آن صفحه ای را که باید خوانده شود می روبد. یک آشکارساز نوری باریکه پراکنده از نواحی تاریک و روشن روی صفحه را کنترل می کند و آن را به سیگنال الکتریکی تبدیل می کند. سیستم های لیزری رونوشت اکنون به طور وسیعی توسط بسیاری از ناشران روزنامه ها برای انتقال رونوشت صفحات روزنامه به کار برده می شود.

__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم

به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم

چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم

زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم

خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم

استاد فاضل نظری
پاسخ با نقل قول
  #10  
قدیمی 10-23-2009
رزیتا آواتار ها
رزیتا رزیتا آنلاین نیست.
مسئول و ناظر ارشد-مدیر بخش خانه داری



 
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677

9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
پیش فرض کاربرد لیزر در هولوگرافی

کاربرد لیزر در هولوگرافی

مقدمه

تمام نگاری یک تکنیک انقلابی است که عکسبرداری سه بعدی (یعنی کامل) از یک جسم و یا یک صحنه را ممکن می‌کند. این تکنیک در سال 1948 توسط گابور ابداع شد (در آن زمان به منظور بهتر کردن توان تفکیک میکروسکوپ الکترونی پیشنهاد شد) و بصورت یک پیشنهاد عملی در آمد، اما قابلیت واقعی این تکنیک پس از اختراع لیزر نشان داده شد.
ایجاد هولوگرام

برای ایجاد هولوگرام به یک چشمه نور همدوس که در آن ، امواج همفاز هستند (نور لیزر) نیاز داریم. اساس تمام نگاری به این صورت است که باریکه لیزر بوسیله آینه که قسمتی از نور را عبور می‌دهد، به دو باریکه (بازتابیده و عبوری) تقسیم می‌شوند. باریکه بازتابیده مستقیما به صفحه حساس به نور برخورد می‌کند، در حالی که باریکه عبوری جسمی را که باید تمام نگاری شود روشن می‌کند. به این ترتیب قسمتی از نوری که از جسم پراکنده شده هم روی صفحه حساس (فیلم) می‌افتد. به علت همدوس بودن باریکه‌ها یک نقش تداخلی از ترکیب دو باریکه روی صفحه تشکیل می‌شود.

حالا اگر این فیلم ظاهر شود و تحت بزرگنمایی کافی بررسی شود، می‌توان این فریزهای تداخلی را مشاهده کرد. فاصله بین دو فریز تاریک متوالی معمولا حدود 1 میکرومتر است. این نقش تداخلی پیچیده است و هنگامی که صفحه را بوسیله چشم بررسی می‌کنیم به نظر نمی‌رسد که حامل تصویر مشابه با جسم اولیه باشد، اما این فریزهای تداخلی در واقع حامل ضبط کاملی از جسم اولیه است (هولوگرام انعکاسی یکی از انواع فراوان هولوگرامهاست).




مشاهده هولوگرام

برای مشاهده هولوگرام باید نور را تحت همان زاویه دسته پرتو اصلی که به هنگام عکسبرداری بر فیلم تابانده‌ایم، بر فیلم بتابانیم. در این صورت نمونه‌های تداخلی مضبوط بر فیلم نور را پراش داده چنان منعکس می‌کنند که جهت و شدت امواج تابشی اصلی ، که به هنگام عکسبرداری ایجاد شده است، مجددا بوجود آید. حال فرض کنید که صفحه ظاهر شده را دوباره به محلی که در معرض نور قرار داشت باز گردانیم و جسم تحت مطالعه را برداریم..

باریکه بازتابیده اکنون با فریزهای روی صفحه برهمکنش می‌کنند و دوباره در پشت صفحه یک باریکه پراشیده ایجاد می‌کند. بنابراین ناظری که به صفحه نگاه می‌کند جسم را در پشت صفحه می‌بیند، طوری که انگار هنوز هم جسم در آنجاست. هر یک از دو چشم ، هر نقطه مفروض را بواسطه یک نمونه تداخلی جداگانه مشاهده می‌کند. بدین ترتیب برای هر نقطه از تصویر ، ناظر یک تصویر مجازی سه بعدی را پشت صحفه هولوگرافی شناور است، می‌بیند. با تغییر شدت نور که در نتیجه تغییر زاویه مشاهده ، ایجاد می‌شود، چنین می‌نماید که شی در پشت هولوگرام واقعا وجود دارد.
خصوصیات تمام نگاری

یکی از جالبترین خصوصیات تمام نگاری این است که جسم بازسازی شده رفتار سه بعدی نشان می‌دهد، بنابراین با حرکت دادن چشم از محل تماشا می‌توان طرف دیگر جسم را مشاهده کرد. توجه کنید که برای ضبط تمام نگار باید سه شرط اصلی را برآورد:.

  1. درجه همدوسی نور لیزر باید به اندازه کافی باشد تا فریزهای تداخلی در روی صفحه تشکیل شود.
  2. وضعیت نسبی جسم ، صفحه و باریکه لیزر نباید در هنگام تاباندن نور به صفحه که حدود چند ثانیه طول می‌کشد تغییر کند. در واقع تغییر محل نسبی باید کمتر از نصف طول موج لیزر باشد تا از در هم شدن نقش تداخلی جلوگیری کند.
  3. قدرت تفکیک صفحه عکاسی باید به اندازه کافی زیاد باشد تا بتواند فریزهای تداخلی را ضبط کند.
کاربرد





تمام نگاری به عنوان یک تکنیک ضبط و بازسازی تصویر سه بعدی بیشترین موفقیت را تا کنون در کاربردهای هنری داشته است تا در کاربردهای علمی. اما بر اساس تمام نگاری از یک تکنیک تداخل سنجی تمام نگاشتی در کاربردهای علمی به عنوان وسیله‌ای برای ضبط و اندازه گیری واکنشها و ارتعاشات اجسام سه بعدی استفاده شده است. عکس دو بعدی ، نور را در همه جهات، با شدتی یکسان منعکس می‌سازد.

__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم

به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم

چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم

زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم

خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم

استاد فاضل نظری
پاسخ با نقل قول
پاسخ


کاربران در حال دیدن موضوع: 1 نفر (0 عضو و 1 مهمان)
 

مجوز های ارسال و ویرایش
شما نمیتوانید موضوع جدیدی ارسال کنید
شما امکان ارسال پاسخ را ندارید
شما نمیتوانید فایل پیوست در پست خود ضمیمه کنید
شما نمیتوانید پست های خود را ویرایش کنید

BB code is فعال
شکلک ها فعال است
کد [IMG] فعال است
اچ تی ام ال غیر فعال می باشد



اکنون ساعت 08:54 AM برپایه ساعت جهانی (GMT - گرینویچ) +3.5 می باشد.



Powered by vBulletin® Version 3.8.4 Copyright , Jelsoft Enterprices مدیریت توسط کورش نعلینی
استفاده از مطالب پی سی سیتی بدون ذکر منبع هم پیگرد قانونی ندارد!! (این دیگه به انصاف خودتونه !!)
(اگر مطلبی از شما در سایت ما بدون ذکر نامتان استفاده شده مارا خبر کنید تا آنرا اصلاح کنیم)


سایت دبیرستان وابسته به دانشگاه رازی کرمانشاه: کلیک کنید




  پیدا کردن مطالب قبلی سایت توسط گوگل برای جلوگیری از ارسال تکراری آنها