فنی و مهندسی در این زیر تالار به بحث و گفتگو در مورد رشته های فنی و مهندسی پرداخته میشود |

10-28-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
ضرب خارجی
ضرب خارجی
ضرب خارجی که به آن ضرب برداری نیز گفته میشود،یک عمل دوتایی در یک فضای سه بعدی است که بر روی دو بردار اعمال میشود.حاصل این عمل برداری است که بر دو بردار مذکور عمود است.جهت این بردار از طریق قانون دست راست بدست می آید.
تعریف
دو بردار AوB را در نظر میگیریم و زاویه بین این دو بردار را فرض میکنیم در این صورت ضرب خارجی این دو بردار به صورت زیر تعریف میشود:
فرض کنیم دو بردار مذکور بر حسب بردارهای واحد i و j و k و به صورت زیر تعریف شده باشند:
در این صورت ضرب خارجی دو بردار ( بدون نیاز به داشتن زاویه بین آنها) به صورت زیر تعریف میشود:
خصوصیات
خصوصیات هندسی
حجم متوازی السطوحی که روی سه بردار
ساخته شده است از ضرب سه گانه این
سه بردار حاصل میشود.
اندازه ضرب خارجی برابر مساحت یک متوازی الاضلاعی است که بر روی دو ضلع a و b ساخته شده است. یعنی داریم:
همچنین حجم یک متوازی السطوح که بوسیله بردارهای a و b و c ایجاد شده است برابر ضرب سه گانه زیر میباشد:
ویژگیهای جبری
- ضرب خارجی دو بردار خاصیت جابجایی ندارد:
- ضرب خارجی دو بردار خاصیت توزیع پذیری نسبت به عمل جمع دارد:
- ضرب یک عدد اسکالردارای خصوصیت زیر خواهد بود :
- این ضرب شرکت پذیر نیست. ولی در اتحاد ژاکوبی صدق میکند:
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
|

10-28-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
معادله
معادله
در ریاضیات، یک معادله از یک یا چندین متغیر تشکیل شده است که میتواند یک یا چندین جواب داشته باشد.در یک معادله دو عبارت در دو سوی یک = قرار دارند.و مقادیری که به ازای آنها دو عبارت موجود،مقداری مساوی دارند را جواب معادله گویند. به عنوان مثال عبارت زیر یک معادله با یک جواب است.
ولی عبارت زیر معادله ای با دو جواب میباشد.
تاریخچه
معادلات همراه با اعداد، از اولین دستاوردهای ریاضی بشرند. آنها در قدیمی ترین اسناد ریاضی، مکتوب، فی المثل، در متون میخی بابلیهای باستان، که به هزاره قبل از میلاد بر می گردند، و پاپیروسهای مصری باستان، که به امپراطوری میانه در حدود 1800 ق.م. بازگشت دارند، آمده اند.
بنا به ساختار جامعه بابلی مسائل مربوط به تقسیم ارث از اهمیت بسیاری برخوردار بودند. اولین پسر همواره بیشترین سهم را دریافت می کرد، دومی بیشتر از سومی، و به همین ترتیب.
در حالی که مسائل مطرح در بابل ،مجهول نسبتاً واضح توصیف شده است، در پاپیروس های مصری با علامت "h" نمایش داده شده است، که توده یا گردایه را نشان می دهد. چنین محاسباتی نسبتاً زیاد رخ می دهند و متناظر با معادلات خطی ما هستند. مقایسه ای بین متنی مصری از پاپیروس مسکو و نماد نویسی جدید این نکته را روشن می سازند.
پیش از این که زبان نمادین جبری مطرح شود، معادلات را بالاجبار با کلمات می نوشتند حتی فرانسواویت که معمولاً به ویتا موسوم است که شایستگی های بسیاری در زمینه جبر دارد از کلمه لاتین برای برابر بودن استفاده می کرد
علامت برابری = که امروزه متداول است توسط روبرت رکورد پزشک دربار سلطنتی مطرح شد، اما زمان قابل ملاحظه ای طول کشید تا این علامت مقبولیت عام یافت.
the whetstone of witte
وی این طرح را در کتاب درسی جبری که به صورت گفتگو نوشته شده بود و عنوانش "the whetstone of witte" بود مطرح و انگیزه انتخاب ان را با گفتن مطالب زیر بیان کرد «در این مورد همان گونه که قالباً در عمل انجام می دهم یک جفت خط توامان می گذارند این چنین = = =, زیرا هیچ دو شیی نمی توانند برابر محض باشند.
با نوشته شدن کتاب جبر و مقابله توسط خوارزمی در سده های سوم و چهارم هجری ،جبر وارد ریاضیات شد، و به حل معادله ها پرداخته شد.خود واژه جبر به معنای جبران کردن و مقابله به معنای روبه رو قرار دادن دو سوی برابری است.
مجموعه جواب
کار با مجموعه معینی از اعداد، موسوم به حوزه اصلی و مجموعه مشخصی از متغیرها که عناصری از حوزه اصلی با زیر مجموعه ای، موسوم به حوزه تغییرپذیری را می توان به جای آنها قرارداد، آغاز می شود.
در مشخص کردن حوزه اصلی و حوزه تغییر پذیری،N به جای مجموعه اعداد طبیعی، Z به جای مجموعه اعداد صحیح،Q به جای مجموعه اعداد گویا،R به جای مجموعه اعداد حقیقی و C به جای اعداد مختلط قرار می گیرد.
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
|

10-28-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
معادله درجه دوم
معادله درجه دوم
تعریف
دایره ، سهمی ، بیضی و هذلولی هستند که معادلهشان حالتهای خاصی از معادله درجه دوم زیر است:
بطور مثال دایره:
از معادله درجه دوم فوق بدست آورد. در واقع خط راست هم حالت خاصی از معادله درجه دوم است هرگاه ولی این شرایط معادله درجه دوم را به یک معادله خطی بجای معادله درجه دوم بدل میکنند جملات جملات درجه دوم میباشند و در حال حاضر رابطه ذکر شده در تعریف را وقتی که لااقل یکی از این جملات درجه وجود داشته باشند بررسی خواهیم کرد.
تاریخچه
معادلات درجه دوم و اشکال آنها موارد مورد بحث در هندسه تحلیلی سه بعدی هستند. هندسه تحلیلی سه بعدی را ریاضیدانان قرن هفدهم میلادی از قبیل فرما ، دکارت و لاهید ابداع کردند. ولی دستگاه مختصاتی را که ما امروز به کار میبریم ، یوهان برنولی در فاصلهای به لایب نیتس در 1715 صورتبندی کرد. در قرن هجدهم ، آلکسی کلرو (1713-1765) و لئونهارت اویلر (1707-1783) برجسته ترین ریاضیدانانی بودند که هندسه سهبعدی را گسترش دادند.
بخصوص کلرو معلوم ساخت که یک رویه را میتوان با معادلهای بر حسب سه مختصش نشان داد و برای توصیف خمی در فضا ، دو تا از این گونه معادلهها لازم است. او ایدههایش را در کتاب "تحقیق درباره خمهای با خمیدگی مضاعف" در 1731 مطرح کرد وی در این کتاب معادلات چندین رویه درجه دوم از قبیل کره – استوانه – هذلولیوار و بیضیوار را آورد. توجه او در نهایت معطوف به شکل زمین بود که فکر می کرد نوعی بیضیوار باشد. گاسپار موثر هندسهدان پیشرو قرن هجدهم زیرا مطالب زیادی درباره هندسه تحلیلی سه بعدی نوشت.
ساختمان
جمله مخلوط را میتوان با دوران محورها حذف نمود بی آنکه از کلیت مطلب کاسته شود، بنابراین با تبدیل معادله ذکر شده در بخش تعریف به معادله زیر خواهیم داشت:
در این صورت معادله فوق:
- یک خط راست است هرگاه یا یکی از آنها صفر نباشد.
- یک دایره است هرگاه ، در حالات خاص ممکن است که به یک نقطه تبدیل شود و یا هیچ مکان حقیقی بوجود نیاورد.
- یک سهمی است هرگاه نسبت به یکی از متغیرها خطی و نسبت به دیگری از درجه دوم باشد.
- یک بیضی است و هرگاه هر دو مثبت و یا هر دو منفی باشند در حالت خاص ممکن است که بیضی تبدیل به یک نقطه شود و یا هیچ مکان حقیقی بوجود نیارود.
- یک هذلولی است هرگاه غیر از صفر و مختلفالعلامات باشند. در حالات خاص ، مثلا ممکن است که مکان به دو خط متقاطع تبدیل شوند.
برای شناختن منحنی ای که معادلهاش داده شده است:
- محورها را (در صورت لزوم) دوران دهید تا درجه ناحیه مخلوط حذف شود.
- محورها را (در صورت لزوم) انتقال دهید تا معادله به شکلی در آید که قابل تشخیص باشد.
گاهی اوقات مفید است که محکی که مشخص میکند که آیا یک معادله درجه دوم سهمی یا بیضی یا هذلولی است مستقیما در مورد معادله بکار برده شود بیآنکه لازم باشد که آن را بوسیله دوران محورها بصورتی فاقد جمله در آوریم.
با توجه به مطالب بالا اگر محورها را به اندازه زاویهای چون که از رابطه بدست میآید دوران دهیم معادله را به شکل معادل زیر تبدیل میکند:
که در آن ضرایب جدید هستند که به ضرایب قدیم مربوطاند. هر گاه α از رابطه گفته شده انتخاب کنیم در اینصورت حال اگر معادله منحنی مطابق با ضرایب جدیدی اما فاقد جمله باشد آن منحنی:
- سهمی است هرگاه یا (اما هر دو) صفر باشد و هر دو در معادله وجود داشته باشند.
- بیضی است (یا در حالات استثنایی ، یک نقطه ، یا تهی است) هرگاه همعلامت باشند.
- هذلولی است (یا در حالات استثنایی یک جفت خط متقاطع است) هرگاه همعلامت نباشند.
ولی میتوان دید که ، برای هر دوران دلخواهی از محورها رابطه زیر بین A ، B ، C و برقرار است:
یعنی مقدار تحت هر دورانی از محورها بدون تغییر باقی میماند. اما وقتی که دوران خاصی را که را صفر کند انجام دهیم طرف راست معادله فوق به شکل ساده تبدیل میگردد. حالا میتوانیم محک لازم را بر حسب مبین معادله یعنی:
بیان کنیم. میتوان گفت که منحنی:
- سهمی (یا در حالات استثنایی یک جفت متوازی ، یا یک خط یا یک مکان تهی) است هرگاه:
- بیضی است (یا در حالات خاص یک نقطه ، یا تهی) هرگاه:
- هذلولی است ( یا در حالات خاص یک جفت خط متقاطع است) هرگاه:
- باید توجه کرد که اگر در معادله اصلی هیچ جمله درجه اولی وجود نداشته باشد، در معادله جدید هم وجود نخواهد داشت. این مطلب از این حقیقت ناشی میشود که دوران محورها درجه هر جمله از معادله را حفظ میکند.
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
|

10-28-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
معادله درجه سوم
معادله درجه سوم
در ریاضیات، معادله درجه 3 یک چند جملهای است که بیشترین درجه مجهول آن 3 باشد. به عنوان مثال معادله یک معادله درجه 3 میباشد، فرم کلی معادلات درجه سوم به صورت نوشته میشود. که بطور معمول ضرایب معادلهای را حقیقی هستند. همچنین، همواره منفی بر اینست که در چنین معادلهای باشد. حل معادله درجه سوم متوجه پیدا کردن ریشههای معادله میباشد.
تاریخچه
معادلات درجه سوم برای اولین بار توسط ریاضیدانان هندسی در حدود 400 سال قبل از میلاد مورد توجه قرار گرفت. در بین ریاضیدانان پارسی، عمر خیام (1123-1048) راه حلی را برای حل معادله درجه سوم ابداع کرد. او در این روش با استفاده از هندسه نشان داد که چگونه با استفاده از روش هندسی میتوان به جواب عددی معادله رسید با استفاده از جدول مثلثاتی. همچنین در حول و حوش قرن 16، یک ریاضیدان ایتالیایی به نام scipione، روشی را برای حل کلاسی از معادلات درجه سوم که به صورت میباشند را ادامه داد. او همچنین نشان داد که تمامی معادلات درجه سوم را میتوان به صورت گفته شده کاهش داد.
ریشههای معادله
هر معادله درجه سوم حقیقی حداقل یک جواب حقیقی دارد. این استدلال نتیجه مستقیم قضیه مقدار میانگین است.
برای معادله درجه سوم یک معادله مشخصهای به صورت زیر بیان میشود که امکان وجود ریشهها را بیان میکند. بنابراین با فرض
موارد زیر نتجه میشود:
- : آنگاه معادله حتما 3 ریشه مجزا خواهد داشت.
- : آنگاه معادله حتما یک ریشه حقیقی و. یک جفت ریشه مختلط خواهد داشت.
- : آنگاه معادله حداقل دو ریشه دارد.
برای تصمیم گیری در مورد اینکه معادله چند ریشه متمایز دارد را به صورت زیر تشکیل میدهیم:
حال دو حالت در نظر میگیریم:
اگر ، آنگاه هر 3 ریشه تکراری است.
در غیر اینصورت معادله 2 ریشه تکراری و یک ریشه مجزا خواهد داشت.
روش کاردانو برای پیدا کردن ریشههای معادله درجه سوم
در ابتدا معادله داده شده را به فرم کلاسیک تبدیل میکنیم، همین معادله داده شده را به ضریب تقسیم میکنیم.
حال با تغییر متغیر: معادله را به فرم زیر تبدیل میکنیم.
بطوری که و معادله به دست آمده را معادله تقلیل یافته مینامیم.
حال فرض میکنیم که بتوانیم اعداد u و v را طوری پیدا کنیم که:
حل جواب معادله داده شده با فرض t=v-u به دست میآید این مطلب بطور مستقیم با تعقیب متغیر t در (2) قابل بررسی میباشد. به عنوان یک نتیجه از اتحاد معادله درجه سوم معادله
(3) قابل حل است. با حل معادله درجه دوم برای v که به دست میآید
با قرار دادن این مقادیر در 3 خواهیم داشت
که از حل این معادله که یک معادله درجه 2 از میباشد خواهیم داشت
حال چون و پس
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
|

10-28-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
معادلات دیفرانسیل
معادلات دیفرانسیل
مقدمه
معادله دیفرانسیل معادلهای است که شامل یک یا چند مشتق یا دیفرانسیل باشد. معادلات دیفرانسیل بر اساس ویژگیهای زیر رده بندی میشوند:
نوع (عادی یا جزئی)
- معادله شامل متغیر مستقل x ، تابع (y = f(x و مشتقات f را یک معادله دیفرانسیل عادی مینامیم.
- معادله ای متشکل از یک تابع مجهول با بیش از یک متغیر مستقل همراه با مشتقات جزئی آن معادله دیفرانسیل جزئی می نامیم.
مرتبه
که عباترت است از مرتبه مشتقی که بالاترین مرتبه را در معادله دارد.
درجه
نمای بالاترین توان مشتقی که بالاترین مرتبه را در معادله دارد، پس از حذف مخرج کسرها و رادیکالهای مربوط به متغیر وابسته و مشتقاتش. معمولا یک معادله دیفرانسیل مرتبه n جوابی شامل n ثابت دلخواه دارد، این جواب را جواب عمومی مینامند.
ساختار
معادلات دیفرانسیل ساختارهای متفاوتی هستند و هر ساختار ویژگیهای متفاوتی دارد:
- معادلات مرتبه اول از درجه اول
- با متغیرهای جدایی پذیر
- همگن
- خطی (برنولی)
- با دیفرانسیلهای کامل
- معادلات مرتبه دوم
- معادلات خطی با ضرایب ثابت: الف) همگن ب) ناهمگن.
- تکنیکهای تقریب زدن: الف) سریهای توانی ب) روشهای عددی.
صور مختلف معادلات دیفرانسیل
معادله دیفرانسیل مرتبه اول از درجه اول را همواره میتوان به صورت زیر در آورد که در آن M و N معرف توابعی از x و y هستند.
Mdx + Ndy = 0
در معادله فوق هرگاه M فقط تابعی از x و N فقط تابعی از y باشد. به صورت معادله جدایی پذیر مرتبه اول است. در این صورت با انتگرال گیری از هر جمله جواب بدست میآید. یعنی:
M(x) dx+ ∫N(y) dy = C∫
معادله دیفرانسیل همگن
گاه معادله دیفرانسیلی را که متغیرهایش جدایی پذیر نیستند با تعویض متغیر میتوان به معادلهای تبدیل کرد که متغیرهایش جدایی پذیر باشند، چنین معادلهای را همگن مینامند. معادله دیفرانسیل خطی مرتبه اول را همیشه میتوان به صورت متعارف زیر در آورد که در آن P و Q توابعی از x هستند.
dy/dx + py = Q
معادله را که بتوان آن را به صورت:
M (x,y) dx + N(x,y) dy = 0
نوشت و دارای ویژگی زیر باشد کامل نامیده میشود. زیرا طرف چپ آن یک دیفرانسیل کامل است.
M/∂y = ∂N/∂x∂
معادلات دیفرانسیل مرتبه دوم
یک معادله دیفرانسیل مرتبه دوم در حالت کلی به صورت زیر است:
F (x,y,dy/dx,d2y/dx2) = 0
این گونه معادلات را معمولا با یک متغیر مناسب مثل dy/dx = p به معادلات دیفرانسیل نوع اول تبدیل کرد و با جاگذاری در معادله مربوط به روش معادلات دیفرانسیل مرتبه اول حل کرد.
معادلات دیفرانسیل خطی
معادله دیفرانسیل
را که در آن توابع ، ، ... ، و بر بازه I پیوسته بوده و (an(x هرگز صفر نباشد یک معادله دیفرانسیل خطی مرتبه n ام مینامیم. که البته اگر در تعریف فوق (F(x مساوی صفر باشد، معادله دیفرانسیل D برای مشتق توابع معرفی میشود، سپس با نوشتن معادله کمکی p(r) = 0 و پیدا کردن صفرهای معادله (p(r جواب معادله همگن را پیدا میکنیم. در صورت ناهمگن بودن علاوه بر عملیات فوق ، جوابهای معادله ناهمگن را با شیوه های خاصی را پیدا کرده به جواب بالا اضافه میکنیم.
حل معادلات دیفرانسیلی خطی مرتبه n ام به توسط سریهای توانی
معادله دیفرانسیل
را در نظر میگیریم که در آن x0 نقطه منفرد معادلات در این صورت با تغییر متغیر زیر به حل معادله میپردازیم:
همین طور با جاگذاری سری مربوط به (F(x و تجریه مناسب و مساوی قرار دادن دو طرف عبارت به حل معادله میپردازیم.
کاربردها
کاربردهای معادلات دیفرانسیل توصیف کننده حرکت سیارات ، که از قانون دوم نیوتن بدست میآیند، هم شامل شتاب و هم شامل سرعت میشوند.
- در مورد حرکت موشکها در نزدیکی سطح زمین و در فضا ، معادلات دیفرانسیل پیچیده ترند.
- مسائل فیزیکی زیادی بعد از فرمول بندی آنها به زبان ریاضی به معادلات دیفرانسیل منجر میشوند.
- در رشته سینتیک شیمیایی ، معادلات دیفرانسیل نقش منحصر به فردی به عهده دارند.
- همینطور در مواردی چون سود مرکب ، واپاشی رادیواکتیو – قانون سرمایش نیوتن و رشد جمعیت کاربرد فراوانی دارد
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
|

10-28-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
مفهوم تابع
مفهوم تابع
دید کلی
مفهوم تایع یکی از مهم ترین مفاهیم علم ریاضی بوده و به همان اندازه در ریاضی اهمیت دارد که مفهوم مجموعه دارد. اغلب، می گویند تابع، کمیت متغیری است که از کمیت متغیر دیگر تبعیت می کند. برای توزیع "معمولی"، مانند:
Y=sinx ,y=x2 , y=a+bx
والی آخر، این تعریف کاملا مناسب می باشد. ممکن است اگر توابع دیگری، مانند: y=sin2x+cos2x
را در نظر بگیریم، می بینیمی که مقادیر آن تابعه دیگر تغییر نمی کند و بنابراین دیگر کمیت متغیری که از کمیت x تبعیت کند، وجود نداد.
! تعریف تایع:
تناظری که به هر عنصر x از یک مجموعه x فقط و فقط یک عنصر y از یک مجموعه y رانسبت را دهد، تایع گویند. توابع را با حروف f یا حروف کوچک خطی لاتین نشان می دهیم.
مفهوم تابع از دیدگاه دیگری
از طرفی، تحت عنوان کمیت "چیزهایی" را در نظر می گیرند که آنها همه با هم قابل مقایسه باشند. یعنی "چیزهایی که" بین آن ها روابط "بیشتر" و "کم تر" و.جود دارد.
در صورتی که در ریاضیات، توابعی نیز مطالعه می شود که برای آنها این روابط تعیین نشده است، مثلا به عنوان مثال از اعداد کمپلکس (مختلط) یا به طور کلی از عناصر یک مجموعه دلخواه می توان اسم برد. توجه دقیق نشان می دهد که در مفهوم تابع وابستگی تغییرات به تغییرات متغیر مستقل آنم اندازه مهم نیست که تناظر بین مقادیر متغیر مستقل و مقادیر تابع مهم می باشد. به خصوص اگر به خاطر بیاوریم که تمامی اطلاعات راجع به تابع، می تواند از بیان گرافیکی آن استخراج گردد، و در نتیجه نباید فرض بین بیان گرافیکی تابع و خود تابع قائل شده و از طرفی
رافیک تابع مجموعه نقاطی است که هر یک از آن ها با دو مختصات y,x یعنی با (x,y) مشخص میگرند. بدین ترتیب به نظر می رسد که در تعریف تابع، مناسب است از آن خصوصیات مجموعه زوج های مرتب استفاده گردد که ویژه گرافیک تابع باشند.
قلمرو و برد تابع:
مجموعه x را قلمرو تابع و مجموعه y را برد تابع f می نامند. تابعf را از مجموعه x به مجموعه y را معمولا به صورت f:x→y y=f(x)
نشان می دهند.
مثال هایی از تابع:
1) تبدیل درجه فارنهایت به سانتیگراد را در نظر می گیریم برای هر عدد حقیقی x، درجه فارنهایت معادل است با:
درجه سانتیگراد.
فرض می کنیم y,x هر دو عدد مجموعه اعداد حقیقی باشند، در نتیجه این عمل، به هر عنصر x از مجموعه Xعنصر یگانه f(x) از مجموعه y را نظیر می کند. اگر داشته باشیم:
پس نتیجه می گیریم برای هر مقدار x یک مقدار x از منحصر بفردی y موجود است.
f(32)=0 f(68)= 0 f(212)=0
مفهوم تابع برای سه تایی مرتب:
اگر در نظر بگیریم که خود متناظر به توسعه 3- تایی مرتب مجموعه هایی است که9 جزو اول آن زیر مجموعه از حاصل ضرب مستقیم جز دوم و سوم آن می باشد و بین عناصر این حاصل ضرب زوج هایی که اجزا اول آنها یکسان و اجزا دوم آن ها متفاوت باشند. وجود ندارد، یعنی اگر (x,z),(x,y) عناصر حاصلضرب مستقیم باشند، آنگاه y=z خواهد بود. بنابراین طبق تعریف:
3- تایی (f,x,y) را تابع گویند، هر گاه:
(1) باشد.
(2) F زوج هایی نداشته باشد که اجزا اول ان ها یکسان و اجزا دوم آن ها متقارن باشند.
گراف تابع:
در تابع f:X→Y مجموعه تمامیزوج هائی که اجزای اول آن ها را عناصر مجموعه X و اجزای دوم آن ها را تصویر عناصر مجموعه X تشکیل می دهند، گراف تابع خواهد بود.
مفاهیم مربوط به تابع:
برای توابع مفاهیمی مانند "گراف تابع"، "ناحیه مبدا تابع"، "ناحیه تعریف تابع"، "ناحیه مقادیر تابع" ظاهر می شود چون برای تابع، ناحیه تعریف با ناحیه مبدا منطبق می شود، بدین جهت برای تابع فقط ناحیه تعریف را به تنهایی به کار می برند. تابه f را با ناحیه تعریف x ناحیه مقصد y تابعی را "نوع x→y" می نامند.
تعبیر هندسی تابع:
f تابع است اگر خطی موازی محور y ها رسم کنیم منحنی تابع را فقط و فقط در یک نقطه قطع کند. یعنی به ازای یک y فقط و فقط یک x داشته باشیم.
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
ویرایش توسط رزیتا : 10-28-2009 در ساعت 08:20 PM
|

10-28-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
حساب دیفرانسیل و انتگرال
حساب دیفرانسیل و انتگرال
- تاریخچه
- قلمرو امروزی حساب دیفرانسیل و انتگرال
- بزرگان این علم
حسابیا حساب دیفرانسیل و انتگرال ریاضیات مربوط به حرکت و تغییر است.
تاریخچه
حساب دیفرانسیل و انتگرال در آغاز برای براورده کردن نیازهای دانشمندان قرن 17 ابداع شد.البته لازم به ذکر است ریشه های این علمرا میتوان تا هندسه کلاسیک یونانی میتوان ردیابی کرد
حساب دیفرانسیل و انتگرال به دانشمندان امکان می داد شیب خمها را تعریف کنند، زاویه آتشباری توپ را برای حصول بیشترین برد بدست آورند،و زمانهایی که سیارات نزدیکترین و دورترین فاصله را از هم دارند،پیش بینی کنند.
پیش از پیشرفتهای ریاضی که به کشف بزرگ آیزاک نیوتن و لایب نیتس انجامید،یوهانس کپلر منجم با بیست سال تفکر،ثبت اطلاعات،و انجام محاسباث سه قانون حرکت سیارات را کشف کرد:
قانون اول کپلر
1.هر سیاره در مداری بیضی شکل حرکث میکندکه یک کانونش در خورشید است
2.خط واصل بین خورشید و ستاره در مدتهای مساوی مساحات مساوی را طی میکنند
قانون دوم کپلر
3.مربع گردش هر سیاره به دور خورشید،متناسب است با مکعب فاصله متوسط آن سیاره از خورشید
ولی استنتاج قوانین کپلر از قوانین حرکت نیوتن با استفاده از حساب دیفرانسیل و انتگرال کار ساده ای است.
قلمرو امروزی حساب دیفرانسیل و انتگرال
امروز حساب دیفرانسیل و انتگرال در آنالیز ریاضی قلمرو واقعا گسترده ای دارد و فیزیکدانان و ریاضیدانان که اول بار این موضوع را ابداع کردند مسلما شگفت زده و شادمان می شدند اگر می دیدند که این موضوع چه انبوهی از مسائل را حل میکند.
امروزه اقتصاددانان از حساب دیفرانسیل و انتگرال برای پیش بینی گرایشهای کلی اقتصادی استفاده می کنند. اقیانوس شناسان برای فرمول بندی نظریه هایی درباره جریانهای دریایی بهره میگیرند،و هواشناسان آن را برای توصیف جریان هوای جو به کار میگیرند،دانشمندان علوم فضایی آن را برای طراحی موشکها به کار میبرند.روانشناسان از آن برای درک ثوهمات بصری استفاده می کنندو...
به طور خلاصه حساب دیفرانسیل و انتگرال علمی است که درتمام علوم امروزی کاربرد بسزایی دارد.
بزرگان این علم
این علم عمدتا کار دانشمندان قرن هفدهم اسث. از میان این دانشمندان میتوان به رنه دکات ،کاوالیری،فرما
و جیمز گرگوری اشاره کرد.
پیشرفت حساب دیفرانسیل و انتگرال در قرن 18 با سرعت زیادی ادامه یافت، در زمره مهمترین افرادی که در این زمینه سهم داشتند میتوان به برادران برنولی اشاره کرد.در واقع خانواده برنولی همان نقشی را در ریاضیات داشتند که خانواده باخ در موسیقی ایفا کردند.
تکمیل ساختار منطقی روشهای حساب دیفرانسیل و انتگرال را ریاضیدانان قرن 19 از جمله لوئی کوشی و کارل وایرشتراس
بر عهده گرفتند.
مطلب را با سخنی از جان فون نویمان که از ریاضیدانان بزرگ قرن بیستم است به پایان میبریم « حساب دیفرانسیل و انتگرال نخستین دستاورد ریاضیات نوین است و درک اهمیت آن کار آسانی نیست. به عقیده من،این حساب روشنتر از هر مبحث دیگری مرحله آغازی ریاضیات نوین را توصیف می کند؛و نظام آنالیز ریاضی، که توسیع منطقی آن است،هنوز بزرگترین پیشرفت فنی در تفکر دقیق به شمار می آید.»
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
|

10-28-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
تابع
تابع
در ریاضیات ، تابع رابطهای است که رابطه بین اعضای یک مجموعه را با اعضایی از مجموعهای دیگر (شاید یک عضو از مجموعه) را بیان میکند. نظریه درباره تابع یک پایه اساسی برای خیلی از شاخههای ریاضی به حساب میآید. مفاهیم تابع ، نگاشت و تبدیل معمولاً مفاهیم مشابهای هستند. عملکرد ها معمولاً دو به دو بین اعضای تابع وارد عمل میشوند.
تعریف تابع
در ریاضیات تابع عملکردی است که برای هر ورودی داده شده یک خروجی منحصر بفرد تولید میکند معکوس این مطلب را در تعریف تابع بکار نمیبرند. یعنی در واقع یک تابع میتواند برای چند ورودی متمایز خروجیهای یکسان را نیز تولید کند. برای مثال با فرض y=x2 با ورودیهای 5- و 5 خروجی یکسان 25 را خواهیم داشت. در بیان ریاضی تابع رابطهای است که در آن عنصر اول به عنوان ورودی و عنصر دوم به عنوان خروجی تابع جفت شده است.
به عنوان مثال تابع f(x)=x2 بیان میکند که ارزش تابع برابر است با مربع هر عددی مانند x
در واقع در ریاضیات رابطه را مجموعه جفتهای مراتب معرفی میکنند. با این شرط که هرگاه دو زوج با مولفههای اول یکسان در این رابطه موجود باشند آنگاه مولفههای دوم آنها نیز یکسان باشد. همچنین در این تعریف خروجی تابع را به عنوان مقدار تابع در آن نقطه مینامند. مفهوم تابع اساسی اکثر شاخههای ریاضی و علوم محاسباتی میباشد. همچنین در حالت کلی لزومی ندارد که ما بتوانیم فرم صریح یک تابع را به صورت جبری آلوگرافیکی و یا هر صورت دیگر نشان دهیم.
فقط کافیست این مطلب را بدانیم که برای هر ورودی تنها یک خروجی ایجاد میشود در چنین حالتی تابع را میتوان به عنوان یک جعبه سیاه در نظر گرفت که برای هر ورودی یک خروجی تولید میکند. همچنین لزومی ندارد که ورودی یک تابع ، عدد و یا مجموعه باشد. یعنی ورودی تابع را میتوان هر چیزی دلخواه در نظر گرفت البته با توجه به تعریف تابع و این مطلبی است که ریاضیدانان در همه جا از آن بهره میبرند.
تاریخچه تابع
نظریه مدرن توابع ریاضی بوسیله ریاضیدان بزرگ لایب نیتر مطرح شد همچنین نمایش تابع بوسیله نمادهای (y=f(x توسط لئونارد اویلر در قرن 18 اختراع گردید، ولی نظریه ابتدایی توابع به عنوان عملکرهایی که برای هر ورودی یک خروجی تولید کند توسط جوزف فوریه بیان شد. برای مثال در آن زمان فوریه ثابت کرد که هر تابع ریاضی سری فوریه دارد.
چیزی که ریاضیدانان ما قبل اوبه چنین موردی دست نیافته بودند، البته موضوع مهمی که قابل ذکر است آنست که نظریه توابع تا قبل از بوجود آمدن نظریه مجموعهها در قرن 19 پایه و اساس محکمی نداشت. بیان یک تابع اغلب برای مبتدیها با کمی ابهام همراه است، مثلا برای توابع کلمه x را به عنوان ورودی و y را به عنوان خروجی در نظر میگیرند ولی در بعضی جاها y,x را عوض میکنند.
ورودی تابع
ورودی یک تابع را اغلب بوسیله x نمایش میدهند. ولی زمانی که ورودی تابع اعداد صحیح باشد. آنرا با x اگر زمان باشد آنرا با t ، و اگر عدد مختلط باشد آنرا با z نمایش میدهند. البته اینها مباحثی هستند که ریاضیدانان برای فهم اینکه تابع بر چه نوع اشیایی اثر میکند بکار میرود. واژه قدیمی آرگومان قبلا به جای ورودی بکار میرفت. همچنین خروجی یک تابع را اغلب با y نمایش میدهند در بیشتر موارد به جای f(x) , y گفته میشود. به جای خروجی تابع نیز کلمه مقدار تابع بکار میرود. خروجی تابع اغلب با y نمایش داده میشود. ولی به عنوان مثال زمانی که ورودی تابع اعداد مختلط باشد، خروجی آنرا با "W" نمایش میدهیم. (W = f(z
تعریف روی مجموعهها
یک تابع رابطهای منحصر به فرد است که یک عضو از مجموعهای را با اعضای مجموعهای دیگر مرتبط میکند. تمام روابط موجود بین دو مجموعه نمیتواند یک تابع باشد برای روشن شدن موضوع ، مثالهایی در زیر ذکر میکنیم:
این رابطه یک تابع نیست چون در آن عنصر 3، با دو عنصر ارتباط دارد. که این با تعریف تابع متناقص است چون برای یک عنصر از مجموعه، دو عنصر در مجموعه موجود است
- این رابطه یک تابع یک به یک است. چون به ازای هر x یک y وجود دارد.
تعریف ساخت یافته تابع
بطور ساخت یافته یک تابع از مجموعه x به مجموعه y بصورت f:x→y نوشته میشود و به صورت سه تایی مرتب ( (x,y,G(f) نمایش داده میشود. بطوری که (G(f زیر مجموعهای از حاصلضرب کارتزین xy میباشد. با این شرط که به ازای هر x در X یک Y متعلق به Y نسبت داد شود. با این شرط زوج مرتب (x,y) را در داخل (G(f میپذیریم. در این حالت نیز X را به عنوان دامنه f و y را به عنوان برد fو (G(f را به عنوان نمودار و یا گراف تابع F در نظر میگیرند.
خواص توابع
توابع میتوانند:
- زوج یا فرد باشند.
- پیوسته یا ناپیوسته باشند.
- حقیقی یا مختلط باشند.
- اسکالر یا برداری باشند.
توابع چند متغیره
یک تابع ممکن است بیشتر از یک متغیر داشته باشد برای مثال یک تابع از f است که دارای سه پارامتر x,y,z است که یک ارزش را برای تابع تولید میکنند. از توابع چند متغیره میتوان به قانون جاذبه نیوتن اشاره کرد که در آن دو جرم با متغیر و و نیز یک متغیر برای فاصله هر جرم به نام در آن وجود دارد.
با مقدار دهی به سه پارامتر فوق مقدار تابع F محاسبه خواهد شد.
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
|

10-28-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
اعمال جبری روی توابع
اعمال جبری روی توابع
دید کلی
برای توابع نیز مانند مجموعهها ، یا خود تناظرها میتوان عملیات جبری را تعریف نمود که باید تابع مورد نظر ، تابع حقیقی باشد. منظور از یک تابع با مقدار حقیقی روی مجموعه X، یا به طور خلاصه ، یک تابع حقیقی روی مجموعه X تابعی است مانند f: X→R از مجموعه X به مجموعه اعداد حقیقی، تابع مختلط نیز به طریق مشابهی تعریف میشود.
مجموعه دلخواه X را در نظر میگیریم؛ فرض میکنیم مجموعه کلیه توابع حقیقی روی مجموعه X باشد. برای این توابع حقیقی ، اعمال جمع و ضرب را نظیر اعمال جمع و ضرب در اعداد حقیقی میتوان تعریف نمود.
تعریف جمع دو تابع
حاصل جمع دو تایی حقیقی f: X→R و g: X→R برابر است با تابع حقیقی f+g: X→R
به طوری که برای هر ، مقدار x تحت تابع f+g مساوی است با حاصل جمع دو عدد حقیقی و به عبارت دیگر ، برای هر داریم:
=+
تعریف ضرب دو تابع
حاصلضرب دو تابع حقیقی f: X→R و g: X→R عبارت است از تابع حقیقی
fg: X→R
به طوری که برای هر مقدار x تحت تابع fg برابر است با حاصلضرب دو عدد حقیقی و . به عبارت دیگر، برای هر داریم:
=x
- هرگاه تعداد عناصر مجموعه X باپایان باشد، با جمع و ضرب عناصر متناظر در جدول تناظر توابع g , f ، به آسانی میتوان جدول تناظر توابع f+g و fg را تشکیل داد.
ویژگیهای مهم حاصلجمع تابعی و حاصلضرب تابعی
حاصلجمع و حاصلضرب توابع حقیقی را به ترتیب حاصلجمع تابعی و حاصلضرب تابعی مینامیم. چون حاصلجمع و حاصلضرب توابع حقیقی براساس حاصلجمع و حاصلضرب اعداد حقیقی تعریف شدند، به سهولت خواص و ویژگیهای زیر را از اعداد حقیقی به ارث میبرند.
حاصلجمع تابعی و حاصلضرب تابعی توابع حقیقی دارای ویژگیهای زیر میباشند: - خاصیت جابجایی: برای دو تابع حقیقی g ,f روی مجموعه X داریم:
f+g=g+f
fg=gf - خاصیت شرکت پذیری: برای سه تابع f، g و h روی مجموعه X داریم:
- خاصیت پخش پذیری: برای سه تابع f، g و h روی مجموعه X داریم:
=+
حاصلضرب تابع حقیقی در یک عدد حقیقی (حاصل ضرب اسکالر)
حاصلضرب عدد حقیقی C و تابع حقیقی f: X→R عبارت است از تابع حقیقی
Cf: X→R
به طوری که برای هر مقدار تابع برابر است با حاصلضرب دو عدد حقیقی C و
خواص حاصلضرب اسکالر
ویژگیهای مهم حاصلضرب عددی توابع حقیقی عبارتند از:
=af+ag
=af+bf
=
=
If=f
که در روابط بالا b , a اعداد حقیقی دلخواه و g , f توابع حقیقی دلخواهی روی مجموعه X میباشند.
تفاضل دو تابع حقیقی
تفاضل دو تابع حقیقی f: X→R و g: X→R را میتوان بر حسب حاصلضرب عددی و حاصلجمع تابعی به وسیله رابطه
f-g=f+(-1)g
یا مستقیما، برای هر به وسیله:
=-
تعریف نمود. تفاضل f-g تابعی حقیقی روی مجموعه X میباشد.
خارج قسمت دو تابع حقیقی
خارج قسمت تابع حقیقی f: X→R بر تابع حقیقی g: X→R را میتوان برای هر به صورت
تعریف نمود. باید توجه داشت که تابع خارج قسمت (f/g) وقتی معین یا تعریف شده است که برای هر داشته باشیم g(x)≠0. بنابراین خارج قسمت f/g تابعی حقیقی روی مجموعه X میباشد.
توانهای صحیح تابع حقیقی
توانهای صحیح تابع حقیقی f: X→R یا به عبارت دیگر fn به این صورت تعریف میشود. هرگاه n>0 ، آنگاه fn ، تابع حقیقی بر روی مجموعه X است. که برای هر با ضابطه
تعریف میشود. اگر n≤0، آنگاه برای هر باید داشته باشیم ، در این صورت ، fn برای هر به صورت
تعریف میشود.
بنابراین، برابر تابع ثابت 1 روی مجموعه X خواهد بود.
خواص توانهای صحیح تابع
خواص توانهای صحیح حقیقی f: X→R، مستقیما از ویژگیهای متناظر اعداد حقیقی نتیجه میشود:
تعریف دامنه
برای توابع جبری که ساختیم باید دامنه تعریف کنیم. دامنه توابع در زیر آمده است:
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
|

10-28-2009
|
 |
|
|
تاریخ عضویت: Aug 2009
نوشته ها: 16,247
سپاسها: : 9,677
9,666 سپاس در 4,139 نوشته ایشان در یکماه اخیر
|
|
تابع یک به یک و پوشا
تابع یک به یک و پوشا
دید کلی:
تابع f:x→y را در نظر می گیریم. منظور از تابع f، تصویر قلمرو آن است. یعنی مجموعه f(x)={f(x)│
معمولا تصویر تابع f:x→y را با نماد Im(f) نشان می دهند: بنابراین داریم: Im(f)=f(x)
به عنوان مثال، اگر تابع f، تصویر جانور x به وسیله نور آفتاب بر روی دیوار y باشد، آنگاه تصویر تابع f یعنی Im(f) برابر سایه جانور بر روی دیوار خواهد بود.
در حالت کلی، در مورد تابع دلخواه f(x), f:x→y معمولا با y براتبر نیست. مثلا درمثال تصویر جانور x به وسیله نور آفتاب بر روی دیوار y، سایه جانور یعنی f(x) معمولا نباید تمام دیوار را بپوشاند. البته امکان دارد که برای تابعی داشته باشیم.
در این حالت f را تابعی از مجموعه x به روی مجموعه y یا به طور خلاصه f را پوشا می نامیم.
تعریف تابع پوشا
تابع f:x→y را پوشا می نامیم اگر تنها f(x)=y
تعریف کلی برای تابع پوشا یا تابع در روی مجموعه ها:
گیریم f تابعی است که ناحیه تعریف آن x و ناحیه مقصد آن y باشد، یعنی تصویر x به توی y باشد:
در اینصورت مقادیر این تابع که آن ما با f(x) نشان می دهیم، یک زیر مجموعه ای است از مجموعه y ، یعنی f(x) cy یعنی اگر ناحیه مقصد y و ناحیه مقادیر تابع f(x) یکسان باشند، در اینصورت f تابعی از x در روی y است یا f "x را در روی y تصویر می کند". یا به طور ساده گویند f یک تابع پوششی است.
در این حالت از تابع هریک از عناصر ناحیه مقصد، افلا تصویر یکی از عناصر ناحیه تعریف تابع (x) می باشند.
مثالی از تابع پوشا:
1) تابع جز صحیح Ө:R→Z از مجموعه اعداد حقیقی به مجموعه اعداد صحیح که هر عدد حقیقی x را به جز صحیح x نظیر می کند.
Ө(x)=x
پوشاست. ولی تابع قدر مطلق α:R→R از مجموعه اعدادحقیقی به خودش که هر عدد حقیقی x را به قدر مطلق آن نظیر می کند.
Α(x)=│x│
پوشا نیست. چون اگر منحنی تابع قدر مطلق را رسم کنیم این منحنی فقط اعداد حقیقی مثبت را شامل میشود که با تعریف تابع قدر مطلق که تمام اعداد حقیقی را شامل میشود تناقص دارد. پس تابع قدر مطلق پوشا نیست.
تابع یک به یک:
تابع دلخواه f:x→y را در نظر می گیریم. فرض می کنیم b,a دو عنصر دلخو.اه متعلق به قلمرو f باشند. بر حسب تعریف تابع، تصاویر f(b),f(a) می توانند هر عنصری از مجموعه y یا برد f باشند. بنابراین ممکن است داشته باشیم.
F(a)=f(b)
مثلا تابع قدر مطلق α:R→R را در نظر می گیریم. واضح است که برای هر عدد حقیقی a داریم
Α(a)=a(-a)
البته ممکن است که برای تابع خاص f:x→y به ازای هیچ دو عنصر b,a از قلمرو f، تساوی امکان پذیر نباشد. توابعی را که دارای ان خاصیت مهم باشند، یک به یک می نامیم.
تعریف تابع یک به یک:
تابع f:x→y را یک به یک می نامیم، اگر و تنه اگر، تصاویر عناصر متمایز قلمرو f متمایز باشند. به عبارت دیگر، تابع f:x→y یک به یک است اگر و تنها اگر برای هر دو عنصر دلخواه x2,x1 از قلمرو f که f(x1)=f(x2) نتیجه شود a=b مثلا، تابع شمول i:x→y که و برای هر با ضابطه تعریف می شود، تابعی یک به یکی است. در حالی که هیچ یگ از تواغبع جز صحیح Ө:R→Z و قدرمطلق α:R→R، یک به یک نیستند.
تشخیص یک به یک بودن:
اگر f یک به یک باشد، هر خط موازی محور x ها را حداکثر در یک نقطه قطعه می کند. در غیر این صورت f یک به یک نخواهد بود.
تابع دوسویی:
تابع f:x→y را دو سویی می نامیم، اگرو تنها اگر یک به یک و پوشا باشد.
به عنئوانمثال: تابع f:R→R که درجه فارنهایت را به درجه سانتیگراد تبدیل می کند تابع دو سویی است برای هر مجموعه دلخواه x، تابع همانی i:x→x که برای هر با ضابطه i(x)=x تعریف می شود، تابعی دو سویی است. یعنی هم یک به یک و هم پوشا می باشد.
رابطه یک به یک بودن با صعودی یا نزولی بودن:
اگر تابع f صعودی یا نزولی باشد، آنگاه یک به یک خواهد بود. ولی هر تابع یک به یک، صعودی یا نزولی نیست.
__________________
زمستان نیز رفت اما بهارانی نمی بینم
بر این تکرارِ در تکرار پایانی نمی بینم
به دنبال خودم چون گردبادی خسته می گردم
ولی از خویش جز گَردی به دامانی نمی بینم
چه بر ما رفته است ای عمر؟ ای یاقوت بی قیمت!
که غیر از مرگ، گردن بند ارزانی نمی بینم
زمین از دلبران خالی است یا من چشم ودل سیرم؟
که می گردم ولی زلف پریشانی نمی بینم
خدایا عشق درمانی به غیر از مرگ می خواهد
که من می میرم از این درد و درمانی نمی بینم
استاد فاضل نظری
|
کاربران در حال دیدن موضوع: 1 نفر (0 عضو و 1 مهمان)
|
|
مجوز های ارسال و ویرایش
|
شما نمیتوانید موضوع جدیدی ارسال کنید
شما امکان ارسال پاسخ را ندارید
شما نمیتوانید فایل پیوست در پست خود ضمیمه کنید
شما نمیتوانید پست های خود را ویرایش کنید
اچ تی ام ال غیر فعال می باشد
|
|
|
اکنون ساعت 07:52 AM برپایه ساعت جهانی (GMT - گرینویچ) +3.5 می باشد.
|